熱緊迫會嚴重影響雞隻生長性能及生理功能,早期熱處理(early-age thermal manipulation, TM)為改善雞隻熱緊迫耐受力的方法之一,可以減緩熱緊迫對雞隻生長性能及生理代謝的影響;腸道菌相可維持腸道正常功能及調控宿主代謝,熱緊迫會透過菌相-腸-腦軸(microbiota-gut-brain axis)之作用造成腸道傷害及菌相不平衡,使病原菌的豐富度增加而降低有益菌的豐富度。目前尚缺少雞隻TM對急性熱緊迫後腸道菌相影響之相關研究,因此本研究之目的為探討TM對急性熱緊迫後白肉雞及B品系台灣土雞盲腸菌相之效應。試驗使用68隻B品系雄性台灣土雞及100隻雄性Ross 308白肉雞,將一半雞隻在3日齡時接受38℃及相對溼度70%之24小時TM,另一半飼養於32℃及相對溼度70%做為對照組(control, CT),所有雞隻隨後飼養於逐漸降低至25℃及相對溼度60%之環境至28日齡,28日齡時各組雞隻再分別飼養於25℃及相對溼度70%之熱中性環境(thermal neutal, TN)與36℃及相對溼度70%的急性熱緊迫處理6小時(heat stress, HS);各處理組分別在28日齡與35日齡時逢機取8隻雞犧牲採腸道樣品,供腸道形態分析及盲腸菌相分析;盲腸內細菌16S rRNA基因V3及V4區域經擴增後以次世代定序法進行菌相分析,各組間菌相以α、β多樣性及線性判別分析進行比較,並以KEGG資料庫搜尋其可能參與的生物路徑。結果顯示TM使白肉雞7日齡體重及體增重顯著低於對照組;TM也使B品系台灣土雞14至28日齡直腸溫度顯著高於對照組,並使TMTN組雞隻直腸溫度顯著較對照組高,白肉雞隻7、21至28日齡直腸溫度也顯著高於對照組;3日齡TM處理後兩品種雞隻直腸溫度都顯著較對照組者低。TM使B品系台灣土雞空腸及迴腸絨毛高度顯著較對照組者低,但同時也使迴腸隱窩深度顯著較對照組低。TM也造成盲腸腸道菌相改變,白肉雞28日齡α多樣性菌種豐富度(observe feature及chao 1)指標在TM後顯著下降,35日齡則在CTHS及TMHS組下降,主座標分析(principal co-ordinates analysis)顯示HS處理之B品系台灣土雞各組菌群有較明顯的分群,TM處理則無影響,LEfSe分析結果顯示白肉雞TMHS組與短鏈脂肪酸生成相關之艾森柏格菌屬(Eisenbergiella)之豐富度顯著較白肉雞CTHS高,B品系台灣土雞TMHS組與短鏈脂肪酸生成有關之分枝桿菌屬(Merdibacter)、丹絲毒菌目(Erysipelotrichales)與罕見小球菌屬(Subdoligranulum)等益菌豐富度顯著較B品系台灣土雞CTHS組高。各組雞隻盲腸菌群參與的生物路徑預測結果顯示在脂多醣合成、葉酸合成、維生素B6代謝等生物路徑具有顯著差異。綜上所述,TM具有降低熱緊迫白肉雞體溫的作用,可能改善兩品種雞隻的脂質代謝,也可改變盲腸菌相,使益菌豐富度增加,並可能具有改善肉雞生理功能的作用。
關鍵字: 熱緊迫、早期熱處理、腸道菌相、白肉雞、B品系台灣土雞
|
- Cao, C., V. S. Chowdhury, M. A. Cline, and E. R. Gilbert. 2021. The microbiota-gut-brain axis during heat stress in chickens: A review. Front. Physiol. 12:752265. doi:10.3389/fphys.2021.752265
- Günal, M. 2013. The effects of early-age thermal manipulation and daily short-term fasting on performance and body temperatures in broiler exposed to heat stress. J. Anim. Physiol. Anim. Nutr. 97:854−860. doi:https://doi.org/10.1111/j.1439−0396.2012.01330.x
- He, X., Z. Lu, B. Ma, L. Zhang, J. Li, Y. Jiang, G. Zhou, and F. Gao. 2018. Effects of chronic heat exposure on growth performance, intestinal epithelial histology, appetite-related hormones and genes expression in broilers. J. Sci. Food Agric. 98:4471−4478.
- Madkour, M., O. Aboelazab, N. Abd El-Azeem, E. Younis, and M. Shourrap. 2023. Growth performance and hepatic antioxidants responses to early thermal conditioning in broiler chickens. J. Anim. Physiol. Anim. Nutr. 107:182−191. doi:https://doi.org/10.1111/jpn.13679
- Masouri, B., S. Salari, H. Khosravinia, S. Tabatabaei Vakili and T. Mohammadabadi. 2015. Effects of dietary Satureja khuzistanica essential oils and α-tocopherol on productive performance, organ weights, blood lipid constituents and antioxidative potential in heat stressed broiler chicks. Europ. Poult. Sci. 79:11-14 doi:10.1399/eps.2015.96.
- Ouchi, Y., V. S. Chowdhury, J. F. Cockrem, and T. Bungo. 2020. Effects of thermal conditioning on changes in hepatic and muscular tissue associated with reduced heat production and body temperature in young chickens. Front. Vet. Sci. 7:610319. doi:10.3389/fvets.2020.610319
- Salem, H. M., A. H. Alqhtani, A. A. Swelum, A. O. Babalghith, S. J. Melebary, S. M. Soliman, A. F. Khafaga, S. Selim, M. T. El-Saadony, K. A. El-Tarabily, and M. E. Abd El-Hack. 2022. Heat stress in poultry with particular reference to the role of probiotics in its amelioration: An updated review. J. Therm. Biol. 108:103302. doi:https://doi.org/10.1016/j.jtherbio.2022.103302
- Shi, D., L. Bai, Q. Qu, S. Zhou, M. Yang, S. Guo, Q. Li, and C. Liu. 2019. Impact of gut microbiota structure in heat-stressed broilers. Poult. Sci. 98:2405−2413.
|