Kun-Yi Hsin - Associate Professor
Kun-Yi Hsin Associate Professor
Full-Time Teacher
Animal Production
(04)22840365#218
(04)22860265
Time...is relative....
Management of Animal Resource, Structural Systems Biology, Molecular Modelling and Computational Biology、AI&Machine Learning
The University of Edinburgh
經歷
2024-PRES  Associate Professor, Department of Animal Science, National Chung Hsing University
2018-2024  Assistant Professor, Department of Animal Science, National Chung Hsing University
2018-2019  Visiting Researcher, Okinawa Institute of Science and Technology Graduate University(OIST), Japan.
2017-PRES  Adjunct Assistant Professor, Department of Animal Science & Technology, National Taiwan University
2014-2018  Staff Scientist, Okinawa Institute of Science and Technology Graduate University(OIST), Japan.
2010-2014  Postdoctoral, Okinawa Institute of Science and Technology Graduate University(OIST), Japan.
2009-2010  Postdoctoral Associate, University of Edinburgh, UK.
2001-2004  Project Assistance, Council of Agriculture, Taiwan.
2000-2001  Research Assistance, Animal Technology Institute, Taiwan.
 
期刊論文
  • Kun-Yi Hsin, San-Yuan Huang and Tzy-Ling Chen (2024) Research on the Business Efficiency of Deer Farms in Taiwan Using Data Envelopment Analysis. Journal of Agriculture and Forestry 71(3) DOI: 10.30089/JAF.202409_71(3).0005
  • Lin, G.Y., Su, Y. C., LinHuang Y., Hsin, K. Y.§ (2023) MESPEUS: a database of metal coordination groups in proteins. Nucleic Acids Research. DOI: https://doi.org/10.1093/nar/gkad1009
  • Su, Y. C., Wu, P. H., Chen, C. H., Hsin, K. Y.§ (2023) . Application of machine learning technologies to predict sows’ number of piglets born alive (NBA) at 3rd parity. Journal of Agriculture and Forestry.
  • Hsin, K. Y., Huang, S. Y., Chen§, T. L., Tu, Y. F., A Study on Taiwan’s Deer Farm Business and Velvet Antler Production Cost Analysis. Journal of Agriculture and Forestry 69(4). DOI: 10.30089/JAF.202212_69(4).0006
  • Hsiao, W. C., Hsin, K. Y.*​, Wu, Z. W., Song, J. S., Yeh, Y. N., Chen, Y. F., Tsai, C. H., Chen, P. H., Shia, K. S., Chang, C. P., Hung. M. S. (2023)  Modulating the affinity and signaling bias of cannabinoid receptor 1 antagonists. Bioorganic Chemistry 130. DOI: https://doi.org/10.1016/j.bioorg.2022.106236
  • Hsin, K. Y. (2020) Computational Modelling of Nanomaterials, 1st Edition. Chapter 6 P77-P93, Protein Modeling. Vol 17, ISBN 9780128214954. Elsevier.
  • Yeh, Y. N., Hsin, K. Y., Zimmer, A., Lin, L. Y.,  Hung, M. S. (2019) A structure-function approach identifies L-PGDS as a mediator responsible for glucocorticoid-induced leptin expression in adipocytes. Biochemical Pharmacology 166, 203–211. DOI: https://doi.org/10.1016/j.bcp.2019.05.022.
  • Chiba, S., M. Ohue, A. Gryniukova, P. Borysko, S. Zozulya, N. Yasuo, R. Yoshino, K. Ikeda, W. Shin, D. Kihara, M. Iwadate, H. Umeyama, T. Ichikawa, R. Teramoto, K. Y. Hsin, V. Gupta, H. Kitano, and M. Sakamoto. (2019) A prospective compound screening contest identified broader inhibitors for Sirtuin 1. Scientific reports 9(1):19585-19585. DOI.org/10.1038/s41598-019-55069-y
  • Hsin, K. Y., (2018) A review of machine learning approaches to agriculture - examples in animal production and management.  J. Agric. Assoc. Taiwan. 18(3-4):275-290. DOI:10.6730/JAAT.201709-12_18(3-4).0001
  • Hsin, K. Y. and Lin, M. F. (2017) Coccidiostats and the regulations of their use. J. Chin, Soc. Anim. Sci. 46(4): 295-310.
  • Hsin, K. Y.*§, Matsuoka, Y., Asai, Y., Kyota. K., Watanabe, T., Kawaoka, Y., Kitano, H. (2016) systemsDock: a web server for network pharmacology-based prediction and analysis. Nucleic Acids Research. 44 (W1): W507-W513. DOI: 10.1093/nar/gkw335.
  • Chiba, S., Ikeda, K., Ishida, T., Gromiha, M.M., Taguchi, Y., Iwadate, M., Umeyama, H., Hsin, K. Y., Kitano, H. and Yamamoto, K. (2015) Identification of potential inhibitors based on compound proposal contest: Tyrosine-protein kinase Yes as a target. Scientific Reports, 5. DOI: 10.1038/srep17209.
  • Harding M. M. and Hsin, K. Y. (2014) Mespeus: A Database of Metal Interactions with Proteins. Chapter 23 P333-P342, Structural Genomics: General Applications, Methods in Molecular Biology, vol. 1091, DOI 10.1007/978-1-62703-691-7_23, Springer Science Business Media, LLC 2014.
  • Ghosh, S., Matsuoka, Y., Asai, Y., Hsin, K. Y., Kitano, H. (2013) Toward an integrated software platform for systems pharmacology. Biopharmaceutics & Drug Disposition. 34(9):508-26. DOI: 10.1002/bdd.1875.
  • Hsin, K. Y.* §, Ghosh, S., Kitano, H. (2013) Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLOS ONE. DOI: 10.1371/journal.pone.0083922.
  • Ghosh, S., Matsuoka, Y., Asai, Y., Hsin, K. Y., Kitano, H. (2011) Software for systems biology: from tools to integrated platforms. Nature Reviews Genetics 12, 821-832.
  • Hsin, K. Y.*, H. P. Morgan, S. Shave, A. Hinton, P. Taylor and M. D. Walkinshaw (2011). EDULISS: a small-molecule database with data-mining and pharmacophore searching capabilities. Nucleic Acids Research 39: D1042-D1048.
  • Morgan, H.P., McNae, I.W., Hsin, K. Y., Michels, P.A., Fothergill-Gilmore, L.A. and Walkinshaw, M.D. (2010). An improved strategy for the crystallization of Leishmania mexicana pyruvate kinase. Acta crystallographica. Section F, Structural biology and crystallization communications 66: 215-218.
  • Hsin, K. Y.*, Y Sheng, MM Harding, P Taylor, MD Walkinshaw (2008). MESPEUS: a database of the geometry of metal sites in proteins. Journal of Applied Crystallography 41(5): 963-968
  • Taylor, P., Blackburn E., Sheng, YG., Harding S, Hsin, K. Y., Kan, D., Shave, S., and Walkinshaw, MD. (2008). Ligand discovery and virtual screening using the program LIDAEUS. British Journal of Pharmacology 153: S55-S67.
 
研討會論文
  • Pei-Hsuan Wu, Kun-Yi Hsin (2025) MESPEUS: An Integrated Database for Metalloproteins and Coordination Groups. National Science and Technology Council "Agricultural Resources Science" Results Presentation Conference.
  • Geng-Yu Lin, Kun-Yi Hsin (2024). Investigation of metal coordination geometry in proteins. The 38th Joint Annual Conference of Biomedical Science (JACBS).
  • Pei-Hsuan Wu, Kun-Yi Hsin (2024). Application of Data Mining and Machine Learning Approaches to Molecular Bioactivity Analysis. The 38th Joint Annual Conference of Biomedical Science (JACBS).
  • Geng-Yu Lin, Kun-Yi Hsin (2024). Study of metal coordination groups in biological macromolecular structures. The 29th Symposium on Cecent Advances in Cellular and Molecular Biology.
  • Lin, G. Y., Hsin, K. Y.§ (2023) Study of characteristics for the metal sites in metalloprotein. Journal of Chinese Society of Animal Science 52.
  • Lin-Huang, Y., Wu, P. H., Luu, K. N., Hsin, K. Y.§ (2023) PatherDB 3.0: A network pharmacology-based database for molecular bioactivity investigation. Journal of Chinese Society of Animal Science 52.
  • Lin, G. Y., Wu, P. H., Hsin, K. Y.§ (2023) Study of metal-protein interactions. 2023 RIKEN-NCHU Joint Symposium.
  • Su, Y. C., Lin-Huang, Y., Hsin, K. Y.§ (2023) PatherDB 1.2: A molecular bio-activity database for network pharmacology-based study. 2023 RIKEN-NCHU Joint Symposium.
  • Lin, G. Y., Su, Y. C., Liao, W. N., Lin-Huang, Y., Hsin, K. Y.§ (2023) PatherDB: A network pharmacology-based database for molecular bioactivity investigation. The 10th International Congress of Asian Society of Toxicology.
  • Liao, W. N., Hsin, K. Y.§ (2022) Application of machine learning technology to predict protein-protein interaction. Journal of Chinese Society of Animal Science 51 (suppl.): 233.
  • Lin, G. Y., Hsin, K. Y.§ (2022) Study of metal coordination groups in metalloprotein. Journal of Chinese Society of Animal Science 51 (suppl.): 227.
  • Su, Y. C., Hsin, K. Y.§ (2022) Application of data science technology to predict reproductive performance in sows. Journal of Chinese Society of Animal Science 51 (suppl.): 109.
  • Su, Y. C., Chen, C. H., Liao, W. N., Lin, G. Y., Huang, Y. L., Hsin, K. Y. (2022) Application of machine learning technology to predict reproductive performance in sows. The 6th Fatty Pig International Conference.
  • Hsin, K. Y.*§, Kitano, H., Matsuoka, Y. and Ghosh, S. (2015), Application of machine leaning approaches in drug target identification and network pharmacology. IEEE conference proceeding, pp. 219-219. DOI: 10.1109/ICIIBMS.2015.7439493.
 
專利技術
  • Interaction prediction device, interaction prediction method, and computer program product.(14/407,835).
  • Prediction program, method and device for interaction between a small molecule and targeted protein. (JP2012-134261)
 
歷年執行計畫
  • 2025 Development of origin analysis technology and machine learning identification model of livestock and poultry products. Ministry of Agriculture, Executive Yuan, R.O.C.(Taiwan)
  • 2024 Application of machine learning methods to identify the mixture of domestic and imported milk. National Animal Industry Foundation, R.O.C.(Taiwan).
  • 2024 Development of origin analysis technology and machine learning identification model of livestock and poultry products. Ministry of Agriculture, Executive Yuan, R.O.C.(Taiwan)
  • 2023 Development of Intelligent Platform for Alternatives to Animal Testing. Council of Agriculture, Executive Yuan, R.O.C.(Taiwan)
  • 2023 Development of origin analysis technology and machine learning identification model of livestock and poultry products. Council of Agriculture, Executive Yuan, R.O.C.(Taiwan)
  • 2022 Development of Intelligent Platform for Alternatives to Animal Testing. Council of Agriculture, Executive Yuan, R.O.C.(Taiwan)
  • 2022 Application of image data processing and machine learning technologies to observe sow nursing behavior. Council of Agriculture, Executive Yuan, R.O.C.(Taiwan)
  • 2021 Development of Intelligent Platform for Alternatives to Animal Testing. Council of Agriculture, Executive Yuan, R.O.C.(Taiwan)
  • 2021 Application of data science and technology to predict reproductive performance in sows. Council of Agriculture, Executive Yuan, R.O.C.(Taiwan)
  • 2021 Application of Machine Learning to Predict Protein-protein Interaction and to Construct Molecular Pathway. National Science and Technology Council, R.O.C.(Taiwan)
  • 2020 Development of Intelligent Platform for Alternatives to Animal Testing. Council of Agriculture, Executive Yuan, R.O.C.(Taiwan)
  • 2020 Application of machine learning to predict growth performance in pigs. Council of Agriculture, Executive Yuan, R.O.C.(Taiwan)
  • 2018  OIST Incentive Program-Support for KAKENHI grant applications.
  • 2017  OIST Incentive Program-Support for KAKENHI grant applications.
  • 2014  JSPS KAKENHI, Japan (Two years; Ref. 26730152)
  • 2014  IMSUT Joint Research Project, The Institute of Medical Science, The University Of Tokyo (Ref. 2014-343)
 
其他
Research Interests:
  • Applications of artificial intelligence in agriculture.
  • Molecular structure & Bio-system modeling and simulation.
  • Database mining, big-data analysis and machine learning applications.
  • Studies of ligand-protein interactions and metal coordination sites in proteins.