乳牛轉換期產前白蛋白與球蛋白比率與發炎狀態、能量代謝、行為、疾病及搾乳表現之關聯

報告時間:2025-6-20
報告地點:407
指導老師:王建鎧
學生:莊博翔

乳牛於轉換期面臨劇烈的生理與免疫調節壓力,包括負能量平衡與發炎反應,若調節失衡則易導致多種疾病。懷孕後期肝臟產蛋白能力下降,而白蛋白與球蛋白比率 (Albumin-to-Globulin Ratio, AGR) 可同時反映發炎狀態與肝功能變化,為人類常用的病理評估指標,但於乳牛轉換期中相關研究相對有限。因此本研究旨在探討牛隻產前AGR高低與乳牛轉換期之生理健康與擠乳表現之關聯性。本實驗依產前第14天AGR中位數將牛隻分為高AGR組 (H-AGR, AGR>1) 與低AGR組 (L-AGR, AGR≦1),並分別評估兩組牛隻於產前 (-14及-7天) 與產後 (0、2、4、7、14及21天) 之健康、生理指標、行為與擠乳表現。結果顯示,H-AGR於產前與產後 皆具較高的AGR值,而白蛋白濃度兩組間在產後無顯著差異。H-AGR 的牛隻產後直腸溫度顯著較高、總膽固醇具較低的趨勢。能量代謝方面,H-AGR體態評分 (Body condition score, BCS)產前及產後皆顯著較高;且 β-羥基丁酸 (β-hydroxybutyric acid, BHBA) 濃度在產後顯著升高;非酯化脂肪酸 (Non-esterified fatty acid, NEFA) 僅於初產牛中顯著升高,顯示H-AGR牛隻可能面臨較高的能量代謝壓力。免疫細胞分析結果顯示,H-AGR牛隻之總白血球與單核球於產前呈現較高趨勢,產後則顯著上升。過往研究指出,乳房炎牛隻亦常觀察到單核球增加,且乳汁中單核球趨化因子基因表現上調,顯示其可能同時具備系統性與局部發炎反應。儘管疾病發生率兩組間無顯著差異,行為表現方面H-AGR組活動時間顯著增加,而採食與攝食時間皆顯著減少,可能與負面健康狀態相關聯。自動擠乳系統資料顯示,H-AGR組乳量較低,且乳汁導電度變異係數 (Coefficient of variation, CV) 顯著較高 (0.033 ± 0.002 vs. 0.024 ± 0.001),提示其乳房健康風險可能較高。本研究亦觀察到,球蛋白在轉換期間的變動幅度明顯大於白蛋白,因此其變化較易被觀察與辨識。產前球蛋白濃度低於3 g/dL 被認為與產後健康風險增加有關,於本研究中,H-AGR牛隻產前球蛋白濃度為 2.981 ± 0.075 g/dL,推測可能存在免疫球蛋白濃度偏低的情形。此外,具較佳體液免疫反應能力的牛隻,其乳房炎發生率與嚴重度亦較低。綜上所述,產前 AGR 偏高未必代表健康,反而可能反映免疫準備不足與代謝調節失衡,在乳牛轉換期健康評估中應謹慎解讀。
 
 
 
關鍵字:乳牛、轉換期、白蛋白與球蛋白比率、發炎反應、負能量平衡、自動搾乳系統

參考文獻
  • Ceciliani, F., J. Ceron, P. Eckersall, and H. Sauerwein. 2012. Acute phase proteins in ruminants. Journal of proteomics 75(14):4207-4231.
  • Chorfi, Y., A. Lanevschi‐Pietersma, V. Girard, and A. Tremblay. 2004. Evaluation of variation in serum globulin concentrations in dairy cattle. Veterinary Clinical Pathology 33(3):122-127.
  • Kraevskiy, A., V. Yefimov, V. Stefanyk, S. Vlasenko, and T. Basarab. 2022. Relationship between globulins in the late dry period with biochemical parameters, fertility and culling of cows within 90 days after calving. 
  • LeBlanc, S. 2006. Monitoring programs for transition dairy cows. In: Proceedings of the 26th World Biuatrics Congress, Nice. p 460-472.
  • Loor, J. J., H. M. Dann, R. E. Everts, R. Oliveira, C. A. Green, N. A. J. Guretzky, S. L. Rodriguez-Zas, H. A. Lewin, and J. K. Drackley. 2005. Temporal gene expression profiling of liver from periparturient dairy cows reveals complex adaptive mechanisms in hepatic function. Physiological genomics 23(2):217-226.
  • Norberg, E., H. Hogeveen, I. R. Korsgaard, N. Friggens, K. Sloth, and P. Løvendahl. 2004. Electrical conductivity of milk: ability to predict mastitis status. Journal of dairy science 87(4):1099-1107.
  • Schirmann, K., D. Weary, W. Heuwieser, N. Chapinal, R. Cerri, and M. Von Keyserlingk. 2016. Rumination and feeding behaviors differ between healthy and sick dairy cows during the transition period. Journal of dairy science 99(12):9917-9924.
  • Sheldon, I. M., G. S. Lewis, S. LeBlanc, and R. O. Gilbert. 2006. Defining postpartum uterine disease in cattle. Theriogenology 65(8):1516-1530.
  • Sun, X., Y. Hou, Y. Wang, C. Guo, Q. Wang, Y. Zhang, Z. Yang, Z. Wang, Z. Cao, and W. Wang. 2022. The blood immune cell count, immunoglobulin, inflammatory factor, and milk trace element in transition cows and calves were altered by increasing the dietary n-3 or n-6 polyunsaturated fatty acid levels. Frontiers in Immunology 13:897660.
  • Thompson-Crispi, K. A., F. Miglior, and B. A. Mallard. 2013. Incidence rates of clinical mastitis among Canadian Holsteins classified as high, average, or low immune responders. Clinical and Vaccine Immunology 20(1):106-112.
  • Trevisi, E., and A. Minuti. 2018. Assessment of the innate immune response in the periparturient cow. Research in Veterinary Science 116:47-54.
  • Vertiprakhov, V., M. Selionova, V. Malorodov, G. Y. Laptev, and L. Ilyina. 2023. Milk trypsin clear increases under bovine mastitis simultaneously with inflammation gene expression. Sel'skokhozyaistvennaya biologiya [Agricultural Biology] 58(4):685-699.