雞隻隱花色素4基因功能與表達

報告時間:2024-06-21
報告地點:407視聽教室
指導老師:陳洵一
學生:周均祐
摘要

 隱花色素(Cryptochromes, Cry)為細胞內晝夜節律調控機制的分子之一,最初被歸類為類光裂解酶藍光受體,在擬南芥(Arabidopsis)被中發現並扮演著調節生長的角色,後來也在其他植物、微生物、動物中被發現。第四型隱花色素(Cryptochromes4, Cry4)目前只有在鳥禽、斑馬魚等非哺乳脊椎動動物中發現,但目前其功能尚不甚了解。Cry家族成員具光裂解酶同源區與FAD輔因子,被發現廣泛存在於各物種之光感受器。文獻指出,二型Cry與Cry4皆廣泛的表現在家禽各組織中,不同於二型Cry,Cry4的表現並不受到光所誘導,然 Cry4 具有光依性結構變化(light-dependent conformational change)的特性,目前普遍認為Cry4為中樞晝夜節律(circadian rhythm)系統中的光受體(photoreceptors),或扮演候鳥遷徙時磁感應受體(magnetoreceptor),然其在周邊組織的角色未有任何報導。本次試驗以蛋雞顆粒細胞(granulosa cells)與濾泡膜(theca cells)細胞作為模型探討Cry4在周邊組織的角色功能,首先確認細胞是否表現Cry4,結果顯示F1-F5濾泡、小黃濾泡(small yellow follicle, SYF)、大白濾泡(large withe follicle, LWF)皆表現Cry4。前人的研究顯示,內源性LH會誘導蛋雞第二型Cry的基因表現,但是否影響Cry4蛋白表現則未知。以蛋雞下蛋後111、21小時為採樣時間,其中21小時為蛋雞開始大量分泌黃體成長激素(Luteinizing hormone, LH),收集F1-F5濾泡、SYF、LWF,並以肝臟、下視丘為陰性對照組。結果顯示F1-F5濾泡沒有明顯變化趨勢,SYF、LWF則出現了明顯的變化趨勢,且兩者的變化不盡相同,肝臟則如預期沒有變化趨勢,下視丘則受到LH的誘導,第21小時的變化為先前時間點的5倍。以上結果表是內源性 LH surge 會調控誘導蛋雞濾泡細胞中 Cry4 蛋白的表達,但關於 Cry4 在濾泡發育的具體作用還需要進一步研究。
 
關鍵字:晝夜節律、隱花色素4、濾泡發育、排卵、雞

參考文獻
  • Cao, J., J, Bian, Z, Wang, Y, Dong, and Y, Chen. 2017. Effect of monochromatic light on circadian rhythmic expression of clock genes and arylalkylamine N-acetyltransferase in chick retina. Chronobiol. Int. 34: 1149-1157
  • Kavakli, I. H., I. Baris, M. Tardu, S. Gul, H. Oner, S. Cal, and C. Aydın. 2017. The photolyase/cryptochrome family of proteins as DNA repair enzymes and transcriptional repressors. Photochem. Photobiol. 93: 93-103.
  • Kavakli, I. H., I. Baris, M. Tardu, S. Gül, H. Öner, S. Cal, and C. Aydın. 2017. The photolyase/cryptochrome family of proteins as DNA repair enzymes and transcriptional repressors. Photochem. Photobiol. 93: 93-103.
  • Kubo, Y., M. Akiyama, Y. Fukada, and T. Okano. 2006. Molecular cloning, mRNA expression, and immunocytochemical localization of a putative blue‐light photoreceptor CRY4 in the chicken pineal gland. J. Neurochem. 97: 1155-1165.
  • Morris, K. M., M. M. Hindle, S. Boitard, D. W. Burt, A. F. Danner, L. Eory. 2020. The quail genome: insights into social behaviour, seasonal biology and infectious disease response. BMC Biol. 18:1-18.
  • Onoue, T., G, Nishi, J. I. Hikima, M. Sakai, and T. Kono. 2009. Circadian oscillation of TNF-α gene expression regulated by clock gene, BMAL1 and CLOCK1, in the Japanese medaka. Int. Immunopharmacol. 70: 362-371
  • Ozturk, N., C. P. Selby, S. H. Song, R. Ye, C. Tan, Y. T. Kao, and A. Sancar. 2009. comparative photochemistry of animal type 1 and type 4 cryptochromes. Biochemistry. 48: 8585-8593.
  • Pinzon-Rodriguez, A., S. Bensch, and R. Muheim. 2018. Expression patterns of cryptochrome genes in avian retina suggest involvement of Cry4 in light-dependent magnetoreception. J. R. Soc. Interface. 15: 20180058.
  • Tischkau, S. A., R. E. Howell, J. R. Hickok, S. L. Krager, J. M. Bahr. 2011. The luteinizing hormone surge regulates circadian clock gene expression in the chicken ovary. Chronobiol. Int. 28: 10 -20
  • Udoh, U. S., J. A. Valcin, T. M, Swain, A. N, Filiano, K. L. Gamble, M. E. Young, S. M. Bailey. 2018. Genetic deletion of the circadian clock transcription factor BMAL1 and chronic alcohol consumption differentially alter hepatic glycogen in mice. Am. J. Physiol.-Gastroint. Liver Physiol. 314: 431-447
  • Wang, X., C. Jing, C. P. Selby, Y. Y. Chiou, Y. Yang, W. Wu, and J. Wang. 2018. Comparative properties and functions of type 2 and type 4 pigeon cryptochromes. Cell. Mol. Life Sci. 75: 4629-4641.
  • Watari, R., C. Yamaguchi, W. Zemba, Y. Kubo, and T. Okano. 2012. Light-dependent structural change of chicken retinal Cryptochrome4. J. Biol. Chem. 287: 42634-42641.
  • Yasuo, S., M, Watanabe, N, Okabayashi, S, Ebihara, and T, Yoshimura. 2003. Circadian clock genes and photoperiodism: comprehensive analysis of clock gene expression in the mediobasal hypothalamus, the suprachiasmatic nucleus, and the pineal gland of Japanese quail under various light schedules. Endocrinology. 144: 3742-3748.