可用於產製嵌合雞之台灣土雞分化多能性幹細胞之來源與特性

口試日期:2021-08-13
學位類別:碩士
指導老師:唐品琦
研究生:黃芮華
摘要

雌性哺乳動物於死亡後,其性腺中仍有許多尚未成熟之濾泡,若能將這些未成熟濾泡進行體外成熟培養,對於動物之遺傳資源與生殖能力保存將有相當大之助益。因此,本試驗之目的為建立小鼠卵巢組織之體外培養條件,以生產更多發育中濾泡進而獲得成熟卵子。試驗一以出生後五天之小鼠卵巢建立卵巢組織體外培養系統,將卵巢逢機分配至四種不同培養液,分別為培養液中添加豬隻或是人類濾泡刺激激素組(porcine follicle-stimulating hormone, pFSH; human FSH, hFSH),以及是否再額外添加豬濾泡液(porcine follicular fluid, pFF)組。組織切片結果顯示,四組卵巢組織於培養後第4天,其腔前濾泡數(preantral follicles)均顯著多於5天大之新鮮卵巢者;培養至第8天,未添加濾泡液組別之濾泡數明顯較添加濾泡液組者少,且無法持續生長至第12天,唯有hFSH /pFF組於培養12天後次級濾泡(secondary follicles)直徑與數量皆顯著增加,且取出之卵子經體外成熟(in vitro maturation, IVM)後,其成熟率為15%。另外,應用免疫組織化學染色(immunohistochemistry, IHC)法分析培養4天、8天以及12天之卵巢中次級濾泡,發現皆有表現PCNA (proliferating cell nuclear antigen)、GDF-9 (growth differentiation factor -9)、BMP-15 (bone morphogenetic protein-15)與FSHR (follicle-stimulating hormone receptor)等早期濾泡發育相關生長因子。推測由於卵巢培養後取得之卵子皆為裸露卵母細胞(naked oocytes, NOs),因此導致成熟率較低,故欲改善NOs成熟率,試驗二將自性成熟小鼠卵巢取得NOs以及卵丘卵母細胞複合體(Cumulus-Oocyte Complexes,COCs)進行IVM與體外受精(in vitro fertilization, IVF)測試,期能改善成熟培養條件。結果顯示,IVM培養液添加pFF無法提升NOs成熟率,而IVF後雖能夠提升受精率(fertilization rate),但是二細胞比例(2-cell rate)無顯著差異。由試驗一中培養8天之小鼠卵巢組織切片結果可知,卵巢組織內仍然含有大量未發育之始基濾泡(primordial follices),且豬濾泡液由屠宰場取得,批次間可能有些許差異,因此希望能夠直接以GDF-9以及BMP-15生長因子取代濾泡液,並添加SCF (stem cell factor)共同作用以促進始基濾泡活化以及濾泡發育。由卵巢切片結果顯示,5天大小鼠卵巢培養液添加SCF培養4天以及8天,其始基濾泡直徑顯著較出生13天小鼠之新鮮卵巢大,且GDF-9蛋白質表現量亦較多。由上述試驗結果可知,本試驗成功建立新生小鼠卵巢組織培養系統,於培養液中添加hFSH與pFF能夠使初級濾泡(primary follicles)與次級濾泡發育;自性成熟小鼠卵巢取出之NOs進行IVM時,培養液添加pFF無法提升成熟率但可提高受精率。始基濾泡活化則需額外添加SCF,但始基濾泡是否能夠發育至成熟卵子並成功受精,則需要後續更多試驗證明。

參考文獻
  • Ahmadi, A., R. Moghadasali, V. Ezzatizadeh, Z. Taghizadeh, S. M. Nassiri, M. H. Asghari-Vostikolaee, M. Alikhani, F. Hadi, R. Rahbarghazi, R. S. Yazdi, H. Baharvand, and N. Aghdami. 2019. Transplantation of mouse induced pluripotent stem cell-derived podocytes in a mouse model of membranous nephropathy attenuates proteinuria. Scientific Reports 9:15467.
  • Ambrosetti, D. C., H. R. Schöler, L. Dailey, and C. Basilico. 2000. Modulation of the activity of multiple transcriptional activation domains by the DNA binding domains mediates the synergistic action of Sox2 and Oct-3 on the fibroblast growth factor-4enhancer. Journal of Biological Chemistry 275(30):23387-23397.
  • Amporn, C., P. C. Tang, C. K. Wang. 2020. Derivation and characterization of putative embryonic stem cells isolated from blastoderms of Taiwan Country chicken for the production of chimeric chickens. Animal Biotechnology doi:10.1080/10495398.2020.1848856.
  • Baguisi, A., E. Behboodi, D. T. Melican, J. S. Pollock, M. M. Destrempes, C. Cammuso, J. L. Williams, S. D. Nims, C. A. Porter, and P. Midura. 1999. Production of goats by somatic cell nuclear transfer. Nature biotechnology 17(5):456.
  • Blasi, R. D., M. M. Marbiah, V. Sicilliano, K. Polizzi, F. Ceroni. 2021. A call for caution in analysing mammalian co-transfection experiments and implications of resource competition in data misinterpretation. Nature communications 12:1-6.
  • Byrne, J. A., S. M. Mitalipov, and D. P. Wolf. 2006. Current progress with primate embryonic stem cells. Current stem cell research & therapy 1(2):127-138.
  • Casanova, E. A., K. Bürki, and P. Cinelli. 2011. Molecular Mechanisms of Pluripotency in Murine Embryonic Stem Cells, Embryonic Stem Cells: The Hormonal Regulation of Pluripotency and Embryogenesis. IntechOpen.
  • Chang, I. K., D. K. Jeong, Y. H. Hong, T. S. Park, Y. K. MOON, T. Ohno, and J. Y. Han. 1997. Production of germline chimeric chickens by transfer of cultured primordial germ cells. Cell biology international 21(8):495-499.
  • Chen, A. E., and D. A. Melton. 2007. Derivation of human embryonic stem cells by immunosurgery. JoVE (Journal of Visualized Experiments) (10):e574.
  • Choi, J. W., S. Kim, T. M. Kim, Y. M. Kim, H. W. Seo, T. S. Park, J.-W. Jeong, G. Song, and J. Y. Han. 2010. Basic fibroblast growth factor activates MEK/ERK cell signaling pathway and stimulates the proliferation of chicken primordial germ cells. PloS one 5(9):e12968.
  • Choi, H. W., J. S. Kim, S. Choi, Y. J. Hong, S. J. Byun, H. G. Seo, and J. T. Do. 2016. Mitochondrial remodeling in chicken induced pluripotent stem like cells. Stem cells and development doi:10.1089/scd.2015.0299.
  • Chung, Y., I. Klimanskaya, S. Becker, J. Marh, S.-J. Lu, J. Johnson, L. Meisner, and R. Lanza. 2006. Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 439(7073):216.
  • Cinelli, P., E. A. Casanova, S. Uhlig, P. Lochmatter, T. Matsuda, T. Yokota, T. Rülicke, B. Ledermann, and K. Bürki. 2008. Expression profiling in transgenic FVB/N embryonic stem cells overexpressing STAT3. BMC developmental biology 8(1):57.
  • Czechanski, A., C. Byers, I. Greenstein, N. Schrode, L. R. Donahue, A.-K. Hadjantonakis, and L. G. Reinholdt. 2014. Derivation and characterization of mouse embryonic stem cells from permissive and nonpermissive strains. Nature protocols 9(3):559.
  • Dai, R., R. Rossello, C. C. Chen, J. Kessler, I. Davison, U. Hochgeschwender, and E. D. Jarvis. 2014. Maintenance and neuronal differentiation of chicken induced pluripotent stem-like cells. Stem cells international 2014:182737.
  • De Felici, M. 2005. Adhesion molecules for mouse primordial germ cells. Front Biosci 10:542-51.
  • De Miguel, M. P., L. Cheng, E. C. Holland, M. J. Federspiel, and P. J. Donovan. 2002. Dissection of the c-Kit signaling pathway in mouse primordial germ cells by retroviral-mediated gene transfer. Proceedings of the National Academy of Sciences 99(16):10458-10463.
  • De Souza, A. F., N. C. G. Pieri, K. C. S. Roballo, F. F. Bressan, J. B. Casals, C. E. Ambrosio, F. Perecin, D. S. Martins. 2018. Dynamics of male canine germ cell development. PLoS One 13:1-22.
  • Devine, M. J., M. Ryten, P. Vodicka, A. J. Thomson, T. Burdon, H. Houlden, F. Cavaleri, M. Nagano, N. J. Drummond, and J.-W. Taanman. 2011. Parkinson's disease induced pluripotent stem cells with triplication of the α-synuclein locus. Nature communications 2:440.
  • Du, F., C.-H. Chen, Y. Li, Y. Hu, L.-Y. An, L. Yang, J. Zhang, Y. E. Chen, and J. Xu. 2015. Derivation of Rabbit Embryonic Stem Cells from Vitrified–Thawed Embryos. Cellular Reprogramming (Formerly" Cloning and Stem Cells") 17(6):453-462.
  • Dubois, R., Y. Croisille, A. K. Tarkowski, W. Harris Geoffrey, and G. Edwards Robert. 1970. Germ-cell line and sexual differentiation in birds. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 259(828):73-90. doi: 10.1098/rstb.1970.0047
  • Eyal-Giladi, H., S. Kochav, and M. Menashi. 1976. On the origin of primordial germ cells in the chick embryo. Differentiation 6(1-3):13-16.
  • Eyal-Giladi, H., and S. Kochav. 1976. From cleavage to primitive streak formation: A complementary normal table and a new look at the first stages of the development of the chick. Developmental Biology 49:321-337.
  • Fan, L., J. Moon, T.-T. Wong, J. Crodian, and P. Collodi. 2008. Zebrafish primordial germ cell cultures derived from vasa:: RFP transgenic embryos. Stem cells and development 17(3):585-598.
  • Farini, D., G. La Sala, M. Tedesco, and M. De Felici. 2007. Chemoattractant action and molecular signaling pathways of Kit ligand on mouse primordial germ cells. Developmental Biology 306(2):572-583. doi: https://doi.org/10.1016/j.ydbio.2007.03.031
  • Farzaneh, M., F. Attari, P. Mozdziak, and S. Khoshnam. 2017. The evolution of chicken stem cell culture methods. British poultry science 58(6):681-686.
  • Folch, J., M. Cocero, P. Chesné, J. Alabart, V. Domínguez, Y. Cognié, A. Roche, A. Fernández-Arias, J. Martí, and P. Sánchez. 2009. First birth of an animal from an extinct subspecies (Capra pyrenaica pyrenaica) by cloning. Theriogenology 71(6):1026-1034.
  • Gomperts, M., M. Garcia-Castro, C. Wylie, and J. Heasman. 1994. Interactions between primordial germ cells play a role in their migration in mouse embryos. 120(1):135-141.
  • Graf, U., E. A. Casanova, and P. Cinelli. 2011. The Role of the Leukemia Inhibitory Factor (LIF) — Pathway in Derivation and Maintenance of Murine Pluripotent Stem Cells. 2(1):280.
  • Greber, B., G. Wu, C. Bernemann, J. Y. Joo, D. W. Han, K. Ko, N. Tapia, D. Sabour, J. Sterneckert, P. Tesar, H. R. Scholer. 2010. Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells. Cell Stem Cell 6(3):215-216.
  • Hamann, A., A. Nguyen, and A. K. Pannier. 2019. Nucleic acid delivery to mesenchymal stem cells: a review of nonviral methods and applications. Journal of Biological Engineering 13(7):1-16.
  • Hamburger, V., and H. L. Hamilton. 1951. A series of normal stages in the development of the chick embryo. Journal of Morphology 88:49-92.
  • Han, J. Y. 2009. Germ cells and transgenesis in chickens. Comparative immunology, microbiology and infectious diseases 32(2):61-80.
  • Han, J. Y., T. S. Park, Y. H. Hong, D. K. Jeong, J. N. Kim, K. D. Kim, and J. M. Lim. 2002. Production of germline chimeras by transfer of chicken gonadal primordial germ cells maintained in vitro for an extended period. Theriogenology 58(8):1531-1539.
  • Han, J. Y., and Y. H. Park. 2018. Primordial germ cell-mediated transgenesis and genome editing in birds. Journal of Animal Science Biotechnology 9:19.
  • Hansen, J. S. 2002. Embryonic stem cell production through therapeutic cloning has fewer ethical problems than stem cell harvest from surplus IVF embryos. Journal of Medical Ethics 28(2):86-88.
  • Hayashi, M., T. Kawaguchi, G. D. Hills, and H. Imai. 2018. Gerneration of germ cells from pluripotent stem cells in mammals. Reproductive Medicine and Biology 17:107-114.
  • Horiuchi, H., A. Tategaki, Y. Yamashita, H. Hisamatsu, M. Ogawa, T. Noguchi, M. Aosasa, T. Kawashima, S. Akita, N. Nishimichi, N. Mitsui, S. Furusawa, and H. Matsuda. 2004. Chicken Leukemia Inhibitory Factor Maintains Chicken Embryonic Stem Cells in the Undifferentiated State.
  • Houdebine, L. M. 1997. Generating biological models through gene transfer to domestic animals. Veterinary Research 28:201-205.
  • Houdebine, L.-M. 2007. Transgenic animal models in biomedical research, Target Discovery and Validation Reviews and Protocols. Springer. p. 163-202.
  • Intarapat, S., and C. D. Stern. 2013. Chick stem cells: Current progress and future prospects. Stem Cell Research 11(3):1378-1392. doi: https://doi.org/10.1016/j.scr.2013.09.005
  • Irie, N., W. W. C. Tang, and M. A. Surani. 2014. Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis. Reproductive Medicine and Biology. 13:203-215.
  • Israel, M. A., S. H. Yuan, C. Bardy, S. M. Reyna, Y. Mu, C. Herrera, M. P. Hefferan, S. Van Gorp, K. L. Nazor, and F. S. Boscolo. 2012. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482(7384):216.
  • Jahanpanah, M., F. Pourasgari, A. Mohammadi-Sangcheshmeh, A. Ardeshirylajimi, M. Azarnia, S. D. Sharifi, and M. Soleimani. 2014. Pluripotency properties of embryonic stem cells isolated from stage X blastoderm of Mazandaran native chicken.
  • Jeong, H.-S., D.-W. Kim, S.-Y. Chun, S. Sung, H.-J. Kim, S. Cho, H. Kim, and S.-J. Oh. 2014. Native pig and chicken breed database: NPCDB. Asian-Australasian journal of animal sciences 27(10):1394.
  • Ji, M., W. Guan, Y.-h. Gao, L. Li, C.-y. Bai, Y.-h. Ma, and X.-c. Li. 2016. Cultivation and Biological Characterization of Chicken Primordial Germ Cells.
  • Jung, J. G., D. K. Kim, T. S. Park, S. D. Lee, J. M. Lim, and J. Y. Han. 2005. Development of novel markers for the characterization of chicken primordial germ cells. Stem Cells 23(5):689-698.
  • Katayama, M., T. Hirayama, T. Tani, K. Nishimori, M. Onuma, T. Fukuda. 2018. Chicken derived induced pluripotent stem cells by the poly-cistronic transposon with enhanced transcriptional activity. Journal of Cellular Physiology 233:990-1004.
  • Kato, Y., T. Tani, Y. Sotomaru, K. Kurokawa, J.-y. Kato, H. Doguchi, H. Yasue, and Y. Tsunoda. 1998. Eight calves cloned from somatic cells of a single adult. Science 282(5396):2095-2098.
  • Kfoury, C. 2007. Therapeutic cloning: promises and issues. McGill journal of medicine : MJM : an international forum for the advancement of medical sciences by students 10(2):112-120.
  • Kim, Y. M., and J. Y. Han. 2018. The early development of germ cells in chicken. The International journal of developmental biology 62(1-2-3):145-152.
  • Kino, K., B. Pain, S. Leibo, M. Cochran, M. Clark, and R. Etches. 1997. Production of chicken chimeras from injection of frozen-thawed blastodermal cells. Poultry science 76(5):753-760.
  • Kong, L., L. Qiu, Q. Guo, Y. Chen, X. Zhang, B. Chen, Y. Zhang, and G. Chang. 2018. Long-term in vitro culture and preliminary establishment of chicken primordial germ cell lines. PloS one 13(4):e0196459-e0196459. doi: 10.1371/journal.pone.0196459
  • Kumar De, A., D. Malakar, Y. S. Akshey, M. K. Jena, and R. Dutta. 2011. Isolation and characterization of embryonic stem cell-like cells from in vitro produced goat (Capra hircus) embryos. Animal biotechnology 22(4):181-196.
  • Kuwana, T., H. Maeda-Suga, and T. Fujimoto. 1986. Attraction of chick primordial germ cells by gonadal anlage in vitro. 215(4):403-406. doi: doi:10.1002/ar.1092150411
  • Lang, H., B. A. Schulte, J. C. Goddard, M. Hedrick, J. B. Schulte, L. Wei, and R. A. Schmiedt. 2008. Transplantation of mouse embryonic stem cells into the cochlea of an auditory-neuropathy animal model: effect of timing injury. Journal of the association of research in Otolaryngology 9:225-240.
  • Lazar, B., M. Molnar, N. Sztan, B. Vegi, A. Drobnyak, R. Toth, N. T. Szabadi, M. J. McGrew, E. Gocza, E. P. Varkonyi. 2021. Successful cryopreservation and regeneration of a partridge coloured Hangarian native chicken breed using primordial germ cells. Poultry Science 100:101207.
  • Lavial, F., H. Acloque, F. Bertocchini, D. J. MacLeod, S. Boast, E. Bachelard, G. Montillet, S. Thenot, H. M. Sang, and C. D. Stern. 2007. The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells. Development 134(19):3549-3563.
  • Lee, C. K. and J. A. Piedrahita. 2003. Transgenesis and germ cell engineering in domestic animals. Asain-Australasian Journal of Animal Science 16(6):910-927.
  • Lee, Y. 2006. Taiwan country chicken: a slow growth breed for eating quality. In: Symposium, 2006 Scientific Cooperation in Agriculture between Council of Agriculture (Taiwan, ROC) and Institut National de Recherche Agronomique (France). p 121-132.
  • Lee, B. C., H. Oh, M. Kim, G. A. Kim, and J. E. Park. 2014. Cloning of canines. Page 273-286 in Principles of Cloning. Elsevier 273-286
  • Lee, J. H., J. W. Park, S. W. Kim, J. Park, and T. S. Park. 2017. C-X-C chemokine receptor type 4 (CXCR4) is a key receptor for chicken primordial germ cell migration. Journal of Reproduction and Development 63(6):555-562.
  • Li, M., W. MA, Y. HOU, X.-F. SUN, Q.-Y. SUN, and W.-H. WANG. 2004. Improved isolation and culture of embryonic stem cells from Chinese miniature pig. Journal of Reproduction and Development 50(2):237-244.
  • Liou, J. F., W. R. Wu, L. R. Chen, and Y. L. Shiue. 2019. Establishment of an induced pluripotent cell line from Taiwan black silkie chick embryonic fibroblasts for replication-incompetent virus production. Scientific reports 9:15745.
  • Lixin, D., and A. Jing. 2003. The Investigation of Cell Culture Conditions to Maintain Chicken Embryonic Stem Cells as Totipotent Cells. Asian-Australas J Anim Sci 16(8):1102-1107. doi: 10.5713/ajas.2003.1102
  • Lu, Y., F. D. West, B. J. Jordan, J. L. Mumaw, E. T. Jordan, A. Gallegos-Cardenas, R. B. Beckstead, and S. L. Stice. 2012. Avian-induced pluripotent stem cells derived using human reprogramming factors. Stem Cells and Development 21:394-403.
  • Ma, X., H. Chen, and L. Chen. 2016. A dual role of Erk signaling in embryonic stem cells. Experimental hematology 44(3):151-156.
  • Martin, G.R. 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Science 78:7634-7638
  • Matsubara, Y., A. Hirota, H. Sobajima, T. Tagami, and H. Yasue. 2010. A simple culture method of chicken blastodermal cells for germline transmission. The journal of poultry science:1010290078-1010290078.
  • Matsui, Y., K. Zsebo, and B. L. M. Hogan. 1992. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70(5):841-847.
  • doi: https://doi.org/10.1016/0092-8674(92)90317-6
  • Mimeault, M., R. Hauke, and S. K. Batra. 2007. Stem Cells: A Revolution in Therapeutics—Recent Advances in Stem Cell Biology and Their Therapeutic Applications in Regenerative Medicine and Cancer Therapies. Clinical Pharmacology & Therapeutics 82(3):252-264. doi: 10.1038/sj.clpt.6100301
  • Miyahara, D., T. Mori, R. Makino, Y. Nakamura, I. Oishi, T. Ono, K. Nirasawa, T. Tagami, and H. Kagami. 2014. Culture Conditions for Maintain Propagation, Long-term Survival and Germline Transmission of Chicken Primordial Germ Cell-Like Cells.
  • Miyahara, D., I. Oishi, R. Makino, N. Kurumisawa, R. Nakaya, T. Ono, H. Kagami, and T. Tagami. 2016. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2. The Journal of reproduction and development 62(2):143-149. doi: 10.1262/jrd.2015-128
  • Mossahebi-Mohammadi, M., M. Quan, J. S. Zhang, X. Li. 2020. FGF signaling pathway: A key regulator of stem cell pluripotency. Front Cell Dev Biol 8:79.
  • Doi: 10.3389/fcell.2020.00079.
  • Mozdziak, P. E., J. Angerman-Stewart, B. Rushton, S. L. Pardue, and J. N. Petitte. 2005. Isolation of chicken primordial germ cells using fluorescence-activated cell sorting. Poultry Science 84(4):594-600. doi: 10.1093/ps/84.4.594 %J Poultry Science
  • Naeemipour, M., H. Dehghani, M. Bassami, and A. Bahrami. 2013. Expression dynamics of pluripotency genes in chicken primordial germ cells before and after colonization of the genital ridges. Molecular reproduction and development 80(10):849-861.
  • Naito, M., T. Harumi, and T. Kuwana. 2010. Long Term in vitro Culture of Chicken Primordial Germ Cells Isolated from Embryonic Blood and Incorporation into Germline of Recipient Embryo. The Journal of Poultry Science 47(1):57-64. doi: 10.2141/jpsa.009058
  • Naito, M., T. Harumi, and T. Kuwana. 2012. Expression of GFP gene in cultured PGCs isolated from embryonic blood and incorporation into gonads of recipient embryos. The Journal of Poultry Science 49(2):116-123.
  • Naito, M., T. Harumi, and T. Kuwana. 2015. Long-term culture of chicken primordial germ cells isolated from embryonic blood and production of germline chimaeric chickens. Animal Reproduction Science 153:50-61. doi: https://doi.org/10.1016/j.anireprosci.2014.12.003
  • Naito, M., A. Tajima, Y. Yasuda, and T. Kuwana. 1994. Production of germline chimeric chickens, with high transmission rate of donor‐derived gametes, produced by transfer of primordial germ cells. Molecular reproduction and development 39(2):153-161.
  • Nakagawa, M., N. Takizawa, M. Narita, T. Ichisaka, and S. Yamanaka. 2010. Promotion of direct reprogramming by transformation-deficient Myc. Proceedings of the National Academy of Sciences 107(32):14152-14157.
  • Nakamura, Y., H. Kagami, and T. Tagami. 2013. Development, differentiation and manipulation of chicken germ cells. Development, growth & differentiation 55(1):20-40.
  • Nakamura, Y., Y. Yamamoto, F. Usui, T. Mushika, T. Ono, A. Setioko, K. Takeda, K. Nirasawa, H. Kagami, and T. Tagami. 2007. Migration and proliferation of primordial germ cells in the early chicken embryo. Poultry Science 86(10):2182-2193.
  • Nieuwkoop, P. D., and L. A. Sutasurya. 1979. Primordial germ cells in the chordates: embryogenesis and phylogenesis. CUP Archive.
  • Nikolic, A., V. Volarevic, L. Armstrong, M. Lako, and M. Stojkovic. 2016. Primordial germ cells: Current knowledge and perspectives. Stem Cells International 1:1-8.
  • Okita, K., T. Ichisaka, and S. Yamanaka. 2007. Generation of germline-competent induced pluripotent stem cells. nature 448(7151):313.
  • Onishi, A., M. Iwamoto, T. Akita, S. Mikawa, K. Takeda, T. Awata, H. Hanada, and A. C. F. Perry. 2000. Pig Cloning by Microinjection of Fetal Fibroblast Nuclei. Science 289(5482):1188-1190. doi: 10.1126/science.289.5482.1188
  • Ormandy, E. H., J. Dale, and G. Griffin. 2011. Genetic engineering of animals: Ethical issues, including welfare concerns. The Canadian Veterinary Journal 52:544-500.
  • Pain, B., M. Clark, M. Shen, H. Nakazawa, M. Sakurai, J. Samarut, and R. Etches. 1996. Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Development 122(8):2339-2348.
  • Pangas, S. A., and T. K. Woodruff. 2000. Activin signal transduction pathways. Trends in Endocrinology & Metabolism 11(8):309-314.
  • Park, T. S., and J. Y. Han. 2000. Derivation and characterization of pluripotent embryonic germ cells in chicken. Molecular Reproduction and Development 56(4):475-482. doi: 10.1002/1098-2795
  • Petitte, J. N., M. E. Clark, G. Liu, A. M. V. Gibbins, and R. J. Etches. 1990. Production of somatic and germline chimeras in the chicken by transfer of early blastodermal cells. Development 108: 185-189.
  • Petitte, J., L. Karagenc, and M. Ginsburg. 1997. The origin of the avian germ line and transgenesis in birds. Poultry science 76(8):1084-1092.
  • Petitte, J. N., G. Liu, and Z. Yang. 2004. Avian pluripotent stem cells. Mechanisms of Development 121(9):1159-1168. doi: https://doi.org/10.1016/j.mod.2004.05.003
  • Prather, R. S., F. L. Barnes, M. M. Sims, J. M. Robl, W. H. Eyestone, and N. L. First. 1987. Nuclear Transplantation in the Bovine Embryo: Assessment of Donor Nuclei and Recipient Oocyt. Biology of reproduction 37(4):859-866.
  • Raucci, F., A. Fuet, B. Pain. 2015. In vitro generation and characterization of chicken long-term germ cells from different embryonic origins. Theriogenology 84:732-742.
  • Rich, I. N. 1995. Primordial germ cells are capable of producing cells of the hematopoietic system in vitro. Blood 86:463-472.
  • Roach, M., L. Wang, X. Yang, and X. C. Tian. 2006. Bovine embryonic stem cells. Methods in enzymology 418:21-37.
  • Romito, A., and G. Cobellis. 2016. Pluripotent stem cells: current understanding and future directions. Stem Cells International 2016:9451492.
  • Sabour, D., M. J. Arauzo-Bravo, K. Hubner, K. Ko, B. Greber, L. Gentile, M. Stehling, and H. R. Scholer. 2011. Identification of genes specific to mouse primordial germ cells through dynamic global gene expression. Human Molecular Genetics 20:115-125.
  • Sawicka, D., J. Brzezińska, and M. Bednarczyk. 2011. Cryoconservation of embryonic cells and gametes as a poultry biodiversity preservation method. Folia biologica 59(1-2):1-5.
  • Sawicka, D., L. Chojnacka-Puchta, J. Brzezinska, P. Lakota, and M. Bednarczyk. 2015. Cryoconservation of chicken blastodermal cells: Effects of slow freezing, vitrification, cryoprotectant type and thawing method during in vitro processing. Folia biologica 63(2):129-134.
  • Shamblott, M. J., J. Axelman, S. Wang, E. M. Bugg, J. W. Littlefield, P. J. Donovan, P. D. Blumenthal, G. R. Huggins, and J. D. Gearhart. 1998. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proceedings of the National Academy of Sciences 95(23):13726-13731.
  • Shand, J., J. Berg, and C. Bogue. 2012. Human embryonic stem cell (hESC) and human embryo research. Pediatrics 130:972-977.
  • Shiue, Y.-L., J.-J. Tailiu, J.-F. Liou, H.-T. Lu, C. Tai, J.-W. Shiau, and L.-R. Chen. 2009. Establishment of the Long-Term In Vitro Culture System for Chicken Primordial Germ Cells. 44(1):55-61. doi: doi:10.1111/j.1439-0531.2007.00990.x
  • Simon, D. 1982. Conservation of animal genetic resources. Reviewing the problem. In: Annales de génétique et de sélection animale. p 557-558.
  • Solter, D., and B. B. Knowles. 1975. Immunosurgery of mouse blastocyst. Proceedings of the National Academy of Sciences 72(12):5099-5102.
  • Stern, C. 1996. Chick stem cells, Immunology and Developmental Biology of the Chicken. Springer. p. 195-206.
  • Strome, S., and R. Lehmann. 2007. Germ versus soma decisions: lessons from flies and worms. science 316(5823):392-393.
  • Sui, L., N. Danzl, S. R. Campbell, R. Viola, D. Williams, Y. Xing, Y. Wang, N. Phillips, G. Poffenberger, B. Johannesson, J. Oberholzer, A. C. Powers, R. L. Leibel, X. Chen, M. Sykes, and D. Egli. 2018. β-Cell Replacement in Mice Using Human Type 1 Diabetes Nuclear Transfer Embryonic Stem Cells. Diabetes 67(1):26-35. doi: 10.2337/db17-0120
  • Sun, F. Z., and R. M. Moor. 1995. 5 Nuclear Transplantation in Mammalian Eggs and Embryos, Current topics in developmental biology No. 30. Elsevier. p. 147-176.
  • Susta, L., Y. He, J. M. Hutcheson, Y. Lu, F. D. West, S. L. Stice, P. Yu, Z. Abdo and C. L. Afonso. 2016. Derivation of chicken induced pluripotent stem cells telerant to Newcastle disease virus-induced lysis through multiple rounds of infection. Virology Journal 13:205
  • Sztán, N., B. Lázár, N. Bodzsár, B. Végi, K. Liptói, B. Pain, and E. P. Várkonyi. 2017. Successful chimera production in the Hungarian goose (Anser anser domestica) by intracardiac injection of blastodermal cells in 3-day-old embryos. Reproduction, Fertility and Development 29(11):2206-2216.
  • Sztan, N., E. Pataki-Várkonyi, K. Liptoi, and J. Barna. 2012. Observations of embryonic cell manipulations in different poultry species. Magyar Állatorvosok Lapja 134(8):475-481.
  • Tajima, A., M. Naito, Y. Yasuda, and T. Kuwana. 1993. Production of germ line chimera by transfer of primordial germ cells in the domestic chicken (Gallusdomesticus). Theriogenology 40(3):509-519. doi: https://doi.org/10.1016/0093-691X(93)90404-S
  • Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell 131(5):861-872.
  • Takahashi, K., and S. Yamanaka. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell 126(4):663-676.
  • Takeuchi, Y., K. Molyneaux, C. Runyan, K. Schaible, and C. Wylie. 2005. The roles of FGF signaling in germ cell migration in the mouse. 132(24):5399-5409. doi: 10.1242/dev.02080 %J Development
  • Tang, X., S. Xu, H. Zhang, Q. Chen, R. Li, W. Wu, M. Yu, and H. Liu. 2017. Retinoic acid promotes expression of germline-specific genes in chicken blastoderm cells by stimulating Smad1/5 phosphorylation in a feeder-free culture system. BMC Biotechnology 17(1):17. doi: 10.1186/s12896-017-0332-y
  • Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall, and J. M. Jones. 1998. Embryonic stem cell lines derived from human blastocysts. science 282(5391):1145-1147.
  • Tsai, C.-C., and S.-C. Hung. 2012. Functional roles of pluripotency transcription factors in mesenchymal stem cells. Cell Cycle 11(20):3711-3712.
  • Tsuchida, K., M. Nakatani, K. Hitachi, A. Uezumi, Y. Sunada, H. Ageta, and K. Inokuchi. 2009. Activin signaling as an emerging target for therapeutic interventions. Cell communication and signaling 7(1):15.
  • Tsung, H. C., Z. W. Du, R. Rui, X. L. Li, L. P. Bao, J. Wu, S. M. Bao, and Z. Yao. 2003. The cultured and establishment of embryonic germ (EG) cell lines from chinese mini swine. Cell Research 13:195-202.
  • van de Lavoir, M.-C., J. H. Diamond, P. A. Leighton, C. Mather-Love, B. S. Heyer, R. Bradshaw, A. Kerchner, L. T. Hooi, T. M. Gessaro, S. E. Swanberg, M. E. Delany, and R. J. Etches. 2006. Germline transmission of genetically modified primordial germ cells. Nature 441:766. doi: 10.1038/nature04831
  • Volobueva, A. S., A. N. Orekhov, and A. V. Deykin. 2019. An update on the tools for creating transgenic animal models of human disease-focus on atherosclerosis. The Brazilian Journal of Medical Research 52:1-7.
  • Wakayama, T., A. C. Perry, M. Zuccotti, K. R. Johnson, and R. Yanagimachi. 1998. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369-374.
  • Whyte, J., J. D. Glover, M. Woodcock, J. Brzeszczynska, L. Taylor, A. Sherman, P. Kaiser, and M. J. McGrew. 2015. FGF, insulin, and SMAD signaling cooperate for avian primordial germ cell self-renewal. Stem Cell Reports 5(6):1171-1182.
  • Wilmut, I., A. E. Schnieke, J. McWhir, A. J. Kind, and K. H. Campbell. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810.
  • Xie, Z. L., S. L. Shao, J. W. Lv, C. H. Wang, C. Z. Yuan, W. W. Zhang, and X. J. Xu. 2011. Co-transfection and tandem transfection of HEK293A cells for overexpression and RNAi experiments. Cell Biology International 35(3):187-192.
  • Xiong, C., M. Wang, W. Ling, D. Xie, X. Chu, Y. Li, Y. Huang, T. Li, E. Otieno, X. Qiu, and X. Xiao. 2020. Advances in isolation and culture of chicken embryonic stem cells in vitro. Cell Reprogramming 22:1-12.
  • Yamaguchi, S., H. Kimura, M. Tada, N. Nakatsuji, and T. Tada. 2005. Nanog expression in mouse germ cell development. Gene Expression Patterns 5(5):639-646.
  • Yamanaka, S. 2009. A fresh look at iPS cells. cell 137(1):13-17.
  • Yoshida, Y., and S. Yamanaka. 2011. iPS cells: a source of cardiac regeneration. Journal of molecular and cellular cardiology 50(2):327-332.
  • Yu, J., M. A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J. L. Frane, S. Tian, J. Nie, G. A. Jonsdottir, V. Ruotti, and R. Stewart. 2007. Induced pluripotent stem cell lines derived from human somatic cells. science 318(5858):1917-1920.
  • Zhang, S., and W. Cui. 2014. Sox2, a key factor in the regulation of pluripotency and neural differentiation. World journal of stem cells 26;6(3):305-11.
  • Zhang, L., Y. Wu, X. Li, S. Wei, Y. Xing, Z. Lian, and H. Han. 2018. An alternative method for long-term culture of chicken embryonic stem cell in vitro. Stem Cells International 20108:2157451.