建立小鼠卵巢體外培養之最適條件

口試日期:2021-07-30
學位類別:碩士
指導老師:唐品琦
次要指導教授:王建鎧
研究生:蔡安平
摘要

由於適應在地環境以及較具抗病性,臺灣土雞(Taiwan Country chicken)之保種為相當重要之工作,而已知胚幹細胞(embryonic stem cells, ESCs)與始基生殖細胞(primordial germ cells, PGCs)於再生醫學以及保種技術上具有極大之潛力。因此,本研究之目的為分離、培養與特性分析台灣土雞ESCs與PGCs。自發育階段第十期(stage X)之雞胚透明區(area pellucida)分離出胚盤細胞(blastoderm cells, BCs),並培養於條件培養液(conditioned medium)中以維持其增生與存活。應用即時定量聚合酶連鎖反應(quantitative real time polymerase chain reaction, qPCR)與免疫細胞化學染色法(immunocytochemistry, ICC)檢測結果顯示,培養之BCs中可表現多能性標誌基因,POUV、SOX2與 NANOG,以及多能性標誌蛋白質,SSEA-1與SSEA-4,證實培養之BCs應為ESCs。此外,將經細胞膜螢光染劑(DiI stain, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate)標記後之ESCs,注射入孵化3.5天(E3.5)之接受者雞胚(recipient fetuses)背側主動脈,並於注射後持續孵育至第七天進行DiI 染色細胞之檢查,結果發現於33.34%(5/15)接受者雞胚中仍可發現DiI-陽性細胞。試驗第二部分為自發育階段 HH 17-18分離、培養與特性分析台灣土雞PGCs,亦培養於含有LIF、bFGF與活化素(Activin)之條件培養液中進行體外細胞增生與維持。qPCR與ICC分析結果顯示,體外培養之PGCs可表現POUV,但不表現SOX2與NANOG之多能性標誌基因,而多能性標誌蛋白質,整聯蛋白β1與α6(integrin β1and integrin α6)則可被檢測到其表現。細胞移植(cell transplantation)結果顯示,於孵化第3.5天注射Di染色之PGCs的15個接受者雞胚,持續孵化第七天分析,發現共有七個雞胚為嵌合體(chimeras;46.67%; 7/15),而在孵化第十天,十五個接受者雞胚皆為嵌合體(100%; 15/15)。試驗第三部分為將構築於質體載體(plasmid vectdor)之再程式化因子(reprogramming factors),Oct3/4、Sox2、Klf4、c-Myc 與 Nanog,轉染至雞胚纖維母細胞(chicken embryonic fibroblasts, CEFs),試圖產製台灣土雞誘導性多能幹細胞(chicken induced pluripotent stem cells, ciPSCs)。於轉染後第八天,CEFs開始呈現圓形形態,且強烈表現多能性標誌蛋白質integrin β1,以及微弱之integrin α6,qPCR分析結果顯示,只能偵測到POUV之表現。本論文研究結果證實台灣土雞之BCs與PGCs可於體外培養條件下維持未分化狀態,並在細胞移植後,可於接受者雞胚胎中存活,唯本研究產製之ciPSCs未能完全表現相關基因與蛋白質,顯示建立之細胞未達iPSCs之程度,需進一步改善。綜合而論,本研究建立有潛力可產製生殖細胞遺傳(germline transmission)嵌合體之ESCs的培養條件,可應用於台灣土雞遺傳因子保存之目的。

參考文獻
  • Abel, M. H., A. N. Wootton, V. Wilkins, I. Huhtaniemi, P. G. Knight, and H. M. Charlton. 2000. The effect of a null mutation in the follicle-stimulating hormone receptor gene on mouse reproduction. Endocrinology 141:1795-1803.
  • Adhikari, D., and K. Liu. 2009. Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr. Rev. 30:438-464.
  • Adhikari, D., N. Gorre, S. Risal, Z. Zhao, H. Zhang, Y. Shen, and K. Liu. 2012. The safe use of a PTEN inhibitor for the activation of dormant mouse primordial follicles and generation of fertilizable eggs. PLoS One 7:e39034.
  • Adriaens, I., R. Cortvrindt, and J. Smitz. 2004. Differential FSH exposure in preantral follicle culture, marked effects on folliculogenesis and oocyte developmental competence. Hum. Reprod. 19:398-408.
  • Ahn, J., S. Lee, J. Park, J. Kim, J. Park, J. Choi, G. Lee, E. Lee, and J. J. A. A. j. o. a. s. Lim. 2012. In vitro-growth and gene expression of porcine preantral follicles retrieved by different protocols. Asian-australas. J. Anim. Sci. 25:950-955.
  • Aitken, R. J. 2017. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol. Reprod. Dev. 84:1039-1052.
  • Almeida, F. R., N. G. Costermans, N. M. Soede, A. Bunschoten, J. Keijer, B. Kemp, and K. J. Teerds. 2018. Presence of anti-Müllerian hormone (AMH) during follicular development in the porcine ovary. PloS One 13:e0197894.
  • Al-Musawi, S. L., K. L. Walton, D. Heath, C. M. Simpson, and C. A. Harrison. 2013. Species differences in the expression and activity of bone morphogenetic protein 15. Endocrinology 154:888-899.
  • Araújo, V. R., A. B. G. Duarte, J. B. Bruno, C. A. P. Lopes, and J. R. de Figueiredo. 2013. Importance of vascular endothelial growth factor (VEGF) in ovarian physiology of mammals. Zygote 21:295-304.
  • Araújo, V. R., M. O. Gastal, J. R. Figueiredo, and E. L. Gastal. 2014. In vitro culture of bovine preantral follicles: a review. Reprod. Biol. Endocrinol. 12:78.
  • Ashkenazi, H., X. Cao, S. Motola, M. Popliker, M. Conti, and A. Tsafriri. 2005. Epidermal growth factor family members: endogenous mediators of the ovulatory response. Endocrinology 146:77-84.
  • Austin, C. R. 1952. The ‘capacitation’of the mammalian sperm. Nature 170:326-326.
  • Babu, P. S., N. Danilovich, and M. Sairam. 2001. Hormone-induced receptor gene splicing: enhanced expression of the growth factor type I follicle-stimulating hormone receptor motif in the developing mouse ovary as a new paradigm in growth regulation. Endocrinology 142:381-389.
  • Barros, C. 1974. Capacitation of mammalian spermatozoa. Physiology and genetics of reproduction:3-24.
  • Berkholtz, C. B., B. E. Lai, T. K. Woodruff, and L. D. Shea. 2006. Distribution of extracellular matrix proteins type I collagen, type IV collagen, fibronectin, and laminin in mouse folliculogenesis. Histochem. Cell. Biol. 126:583-592.
  • Black, J., and B. Erickson. 1968. Oogenesis and ovarian development in the prenatal pig. Anat. Rec. 161:45-55.
  • Bleil, J. D., and P. M. Wassarman. 1986. Autoradiographic visualization of the mouse egg's sperm receptor bound to sperm. J. Cell Biol. 102:1363-1371.
  • Bodensteiner, K., K. McNatty, C. Clay, C. Moeller, and H. Sawyer. 2000. Expression of growth and differentiation factor-9 in the ovaries of fetal sheep homozygous or heterozygous for the Inverdale prolificacy gene (FecX I). Biol. Reprod. 62:1479-1485.
  • Boland, N., and R. Gosden. 1994. Effects of epidermal growth factor on the growth and differentiation of cultured mouse ovarian follicles. Reproduction 101:369-374.
  • Bravo, R., and H. Macdonald-Bravo. 1987. Existence of two populations of cyclin/proliferating cell nuclear antigen during the cell cycle: association with DNA replication sites. J. Cell Biol. 105:1549-1554.
  • Bristol-Gould, S. K., P. K. Kreeger, C. G. Selkirk, S. M. Kilen, K. E. Mayo, L. D. Shea, and T. K. Woodruff. 2006. Fate of the initial follicle pool: empirical and mathematical evidence supporting its sufficiency for adult fertility. Dev. Biol. 298:149-154.
  • Brito, I., C. Silva, A. Duarte, I. Lima, G. Rodrigues, R. Rossetto, A. Sales, C. Lobo, M. Bernuci, and A. Rosa‐e‐Silva. 2014. Alginate hydrogel matrix stiffness influences the in vitro development of caprine preantral follicles. Mol. Reprod. Dev. 81:636-645.
  • Brunet, A., A. Bonni, M. J. Zigmond, M. Z. Lin, P. Juo, L. S. Hu, M. J. Anderson, K. C. Arden, J. Blenis, and M. E. Greenberg. 1999. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. cell 96:857-868.
  • Byers, S. L., M. V. Wiles, S. L. Dunn, and R. A. Taft. 2012. Mouse estrous cycle identification tool and images. PloS One 7:e35538.
  • Caligioni, C. S. 2009. Assessing reproductive status/stages in mice. Curr. Protoc. Neurosci. 48: A-4I.
  • Champlin, A. K., D. L. Dorr, and A. H. Gates. 1973. Determining the stage of the estrous cycle in the mouse by the appearance of the vagina. Biol. Reprod. 8:491-494.
  • Chang, M. C. 1959. Fertilization of rabbit ova in vitro. Nature 184:466-467.
  • Chaves, R. N., M. H. T. de Matos, J. Buratini, and J. R. de Figueiredo. 2012. The fibroblast growth factor family: involvement in the regulation of folliculogenesis. Reprod. Fertil. Dev. 24:905-915.
  • Chen, J., S. Torcia, F. Xie, C.-J. Lin, H. Cakmak, F. Franciosi, K. Horner, C. Onodera, J. S. Song, and M. I. Cedars. 2013. Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes. Nat. Cell Biol. 15:1415-1423.
  • Choi, M. H., S. P. Gong, and J. M. J. A. A. J. O. A. S. Lim. 2008. Retrieval of porcine ovarian follicles by different methods. Asian-australas. J. Anim. Sci. 21:353-357.
  • Clemens, j. w., k. m. Jaqueline, t. Alliston, j. s. Richards, s. l. Fitzpatrick, and J. Sirois. 1995. Ovarian cell differentiation: a cascade of multiple hormones, cellular signals, and regulated genes. Academic Press p.223-254.
  • Codogno, P., and A. Meijer. 2005. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 12:1509-1518.
  • Combelles, C. M., M. J. Carabatsos, T. R. Kumar, M. M. Matzuk, and D. F. Albertini. 2004. Hormonal control of somatic cell oocyte interactions during ovarian follicle development. Mol. Reprod. Dev. 69:347-355.
  • Cortvrindt, R., J. Smitz, and A. J. H. R. Van Steirteghem. 1996. Ovary and ovulation: In-vitro maturation, fertilization and embryo development of immature oocytes from early preantral follicles from prepuberal mice in a simplified culture system. Hum. Reprod. 11:2656-2666.
  • Cortvrindt, R., Y. Hu, and J. J. H. r. Smitz. 1998. Ovary and ovulation: In-vitro maturation, fertilization and embryo development of immature oocytes from early preantral follicles from prepuberal mice in a simplified culture system. Hum. Reprod. 13:1292-1302.
  • Cossigny, D. A., J. K. Findlay, and A. E. Drummond. 2012. The effects of FSH and activin A on follicle development in vitro. Reproduction 143:221-229.
  • Da Silva-Buttkus, P., G. Marcelli, S. Franks, J. Stark, and K. Hardy. 2009. Inferring biological mechanisms from spatial analysis: prediction of a local inhibitor in the ovary. Proc. Natl. Acad. Sci. U.S.A. 106:456-461.
  • De La Fuente, R., M. J. O'Brien, and J. J. Eppig. 1999. Epidermal growth factor enhances preimplantation developmental competence of maturing mouse oocytes. Hum. Reprod. 14:3060-3068.
  • De Lamirande, E., P. Leclerc and C. Gagnon, 1997. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Molecular Hum. Reprod. 3:175-194.
  • De Matos, D. G., C. C. Furnus, and D. F. Moses. 1997. Glutathione synthesis during in vitro maturation of bovine oocytes: role of cumulus cells. Biol. Reprod. 57:1420-1425.
  • De Matos, D., D. Nogueira, R. Cortvrindt, C. Herrera, T. Adriaenssens, R. Pasqualini and J. Smitz, 2003. Capacity of adult and prepubertal mouse oocytes to undergo embryo development in the presence of cysteamine. Mol Reprod Dev. 64:214-218.
    de Matos, D.G., C.C. Furnus and D.F. Moses, 1997. Glutathione synthesis during in vitro maturation of bovine oocytes: Role of cumulus cells. Biol. Reprod. 57:1420-1425.
  • Demeestere, I., A. Delbaere, C. Gervy, M. Van Den Bergh, F. Devreker, and Y. J. H. r. Englert. 2002. Effect of preantral follicle isolation technique on in-vitro follicular growth, oocyte maturation and embryo development in mice. Hum. Reprod. 17:2152-2159.
  • Desai, N., A. Alex, F. AbdelHafez, A. Calabro, J. Goldfarb, A. Fleischman, T. J. R. B. Falcone, and Endocrinology. 2010. Three-dimensional in vitro follicle growth: overview of culture models, biomaterials, design parameters and future directions. Reprod. Biol. Endocrinol. 8:1-12.
  • Dierich, A., M. R. Sairam, L. Monaco, G. M. Fimia, A. Gansmuller, M. LeMeur, and P. Sassone-Corsi. 1998. Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc. Natl. Acad. Sci. U.S.A. 95:13612-13617.
  • Dinopoulou, V., P. Drakakis, S. Kefala, E. Kiapekou, R. Bletsa, E. Anagnostou, K. Kallianidis and D. Loutradis, 2016. Effect of recombinant-lh and hcg in the absence of fsh on in vitro maturation (ivm) fertilization and early embryonic development of mouse germinal vesicle (gv)-stage oocytes. Reprod. biol. 16: 138-146.
  • Dipaz-Berrocal, D., N. Sá, D. Guerreiro, J. Celestino, J. Leiva-Revilla, B. Alves, K. Alves, R. Santos, F. Cibin, and A. Rodrigues. 2017. Refining insulin concentrations in culture medium containing growth factors BMP15 and GDF9: An in vitro study of the effects on follicle development of goats. Anim. Reprod. Sci. 185:118-127.
  • Dirican, E. K., O. D. Özgün, S. Akarsu, K. O. Akın, Ö. Ercan, M. Uğurlu, Ç. Çamsarı, O. Kanyılmaz, A. Kaya, and A. Ünsal. 2008. Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J. Assist. Reprod. Genet. 25:375-381.
  • Dong, J., D. F. Albertini, K. Nishimori, T. R. Kumar, N. Lu, and M. M. Matzuk. 1996. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383:531-535.
  • Dorrington, J. H., Y. S. Moon, and D. T. Armstrong. 1975. Estradiol-17β biosynthesis in cultured granulosa cells from hypophysectomized immature rats; stimulation by follicle-stimulating hormone1. Endocrinology 97:1328-1331.
  • Downs, S. M. 1989. Specificity of epidermal growth factor action on maturation of the murine oocyte and cumulus oophorus in vitro. Biol. Reprod. 41:371-379.
  • Driancourt, M.-A., K. Reynaud, R. Cortvrindt, and J. Smitz. 2000. Roles of KIT and KIT LIGAND in ovarian function. Rev. Reprod. 5:143-152.
  • Dube, J. L., P. Wang, J. Elvin, K. M. Lyons, A. J. Celeste, and M. M. Matzuk. 1998. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol. Endocrinol. 12:1809-1817.
  • Duda, M., M. Grzesiak, Z. Tabarowski, and M. Tomanek. 2014. Isolation of primordial and primary follicles from porcine ovarian medulla tissue. In: World Congress of Reproductive Biology 2014.
  • Duffy, D. M. 2003. Growth differentiation factor-9 is expressed by the primate follicle throughout the periovulatory interval. Biol. Reprod. 69:725-732.
  • Durlinger, A. L., M. J. Gruijters, P. Kramer, B. Karels, H. A. Ingraham, M. W. Nachtigal, J. T. J. Uilenbroek, J. A. Grootegoed, and A. P. Themmen. 2002c. Anti-Mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology 143:1076-1084.
  • Durlinger, A. L., M. J. Gruijters, P. Kramer, B. Karels, T. R. Kumar, M. M. Matzuk, U. M. Rose, F. H. de Jong, J. T. J. Uilenbroek, and J. A. J. E. Grootegoed. 2001. Anti-Mullerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology 142:4891-4899.
  • Durlinger, A., J. Visser, and A. Themmen. 2002. Regulation of ovarian function: the role of anti-Mullerian hormone. Reproduction 124:601-609.
  • Edwards, S. J., K. L. Reader, S. Lun, A. Western, S. Lawrence, K. P. McNatty, and J. L. Juengel. 2008. The cooperative effect of growth and differentiation factor-9 and bone morphogenetic protein (BMP)-15 on granulosa cell function is modulated primarily through BMP receptor II. Endocrinology 149:1026-1030.
  • El-Hayek, S., I. Demeestere, and H. J. Clarke. 2014. Follicle-stimulating hormone regulates expression and activity of epidermal growth factor receptor in the murine ovarian follicle. Proc. Natl. Acad. Sci. U.S.A. 111:16778-16783.
  • Elvin, J. A., C. Yan, P. Wang, K. Nishimori, and M. M. Matzuk. 1999. Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol. Endocrin. 13:1018-1034.
  • Eppig, J. J., and M. J. O’Brien. 1996. Development in vitro of mouse oocytes from primordial follicles. Biol. Reprod 54:197-207.
    Erickson, G. F., and S. Shimasaki. 2003. The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle. Reprod. Biol. and Endocrin. 1:1-20.
  • Erickson, G., C. Wang, and A. Hsueh. 1979. FSH induction of functional LH receptors in granulosa cells cultured in a chemically defined medium. Nature 279:336-338.
  • Eskandari, F. and H.R. Momeni, 2016. Silymarin protects plasma membrane and acrosome integrity in sperm treated with sodium arsenite. Int. J. Reprod. Biomed. 14:47-52.
  • Feldman, A. T., and D. Wolfe. 2014. Tissue processing and hematoxylin and eosin staining, Histopathology. Humana Press p.31-43.
  • Ferrari, B., A. Pezzuto, L. Barusi, and F. Coppola. 2006. Follicular fluid vascular endothelial growth factor concentrations are increased during GnRH antagonist/FSH ovarian stimulation cycles. Eur. J. Obstet. Gynecol. Reprod. Biol. 124:70-76.
  • Field, S. L., T. Dasgupta, M. Cummings, and N. M. Orsi. 2014. Cytokines in ovarian folliculogenesis, oocyte maturation and luteinisation. Mol. Reprod Develop. 81:284-314.
  • Filatov, M., Y. V. Khramova, and M. Semenova. 2015. In vitro mouse ovarian follicle growth and maturation in alginate hydrogel: current state of the art. Acta Naturae 2:25.
  • Florman, H. M., and B. T. Storey. 1982. Mouse gamete interactions: the zona pellucida is the site of the acrosome reaction leading to fertilization in vitro. Develop. biol. 91:121-130.
  • Fortune, J., S. Kito, S.-A. Wandji, and V. Sršeň. 1998. Activation of bovine and baboon primordial follicles in vitro. Theriogenology 49:441-449.
  • Funahashi, H., T. C. Cantley, T. T. Stumpf, S. L. Terlouw, and B. N. Day. 1994. Use of low-salt culture medium for in vitro maturation of porcine oocytes is associated with elevated oocyte glutathione levels and enhanced male pronuclear formation after in vitro fertilization. Biol. Reprod. 51:633-639.
  • Furimsky, A., N. Vuong, H. Xu, P. Kumarathasan, M. Xu, W. Weerachatyanukul, M. Bou Khalil, M. Kates and N. Tanphaichitr, 2005. Percoll gradient-centrifuged capacitated mouse sperm have increased fertilizing ability and higher contents of sulfogalactosylglycerolipid and docosahexaenoic acid-containing phosphatidylcholine compared to washed capacitated mouse sperm. Biol. Reprod. 72:574-583.
  • Gall, L., C. Boulesteix, S. Ruffini, and G. Germain. 2005. EGF‐induced EGF‐receptor and MAP kinase phosphorylation in goat cumulus cells during in vitro maturation. Mol. Reprod. Dev. 71:489-494.
  • Gall, L., N. Chene, M. Dahirel, S. Ruffini, and C. Boulesteix. 2004. Expression of epidermal growth factor receptor in the goat cumulus–oocyte complex. Mol. Reprod. Dev. 67:439-445.
  • Gao, L., F. Zhao, Y. Zhang, W. Wang, and Q. Cao. 2020. Diminished ovarian reserve induced by chronic unpredictable stress in C57BL/6 mice. Gynecol. Endocrinol. 36:49-54.
  • Gaytan, F., C. Morales, S. Leon, V. Heras, A. Barroso, M. S. Avendaño, M. J. Vazquez, J. M. Castellano, J. Roa, and M. Tena-Sempere. 2017. Development and validation of a method for precise dating of female puberty in laboratory rodents: the puberty ovarian maturation score (Pub-Score). Sci. Rep. 7:1-11.
  • Ge, L., H.-S. Sui, G.-C. Lan, N. Liu, J.-Z. Wang and J.-H. Tan, 2008. Coculture with cumulus cells improves maturation of mouse oocytes denuded of the cumulus oophorus: Observations of nuclear and cytoplasmic events. Fertil. Steril. 90:2376-2388.
    Griswold, M. D., L. Heckert, and C. Linder. 1995. The molecular biology of the FSH receptor. J. Steroid Biochem. Mol. Biol. 53:215-218.
  • Grøndahl, C. 2008. Oocyte maturation. Dan. Med. Bull. 55:1-16.
  • Guéripel, X., V. Brun, and A. Gougeon. 2006. Oocyte bone morphogenetic protein 15, but not growth differentiation factor 9, is increased during gonadotropin-induced follicular development in the immature mouse and is associated with cumulus oophorus expansion. Biol. Reprod. 75:836-843.
  • Gui, L.-M., and I. M. Joyce. 2005. RNA interference evidence that growth differentiation factor-9 mediates oocyte regulation of cumulus expansion in mice. Biol. Reprod. 72:195-199.
  • Halpin, D., A. Jones, G. Fink, and H. Charlton. 1986. Postnatal ovarian follicle development in hypogonadal (hpg) and normal mice and associated changes in the hypothalamic—pituitary ovarian axis. Reproduction 77:287-296.
  • Hardy, B., D. Danon, A. Eshkol, and B. Lunenfeld. 1974. Ultrastructural changes in the ovaries of infant mice deprived of endogenous gonadotrophins and after substitution with FSH. Reproduction 36:345-352.
  • Hardy, K., J. M. Mora, C. Dunlop, R. Carzaniga, S. Franks, and M. A. Fenwick. 2018. Nuclear exclusion of SMAD2/3 in granulosa cells is associated with primordial follicle activation in the mouse ovary. J. Cell Sci. 131:e218123.
  • Hayashi, M., E. McGee, G. Min, C. Klein, U. M. Rose, M. v. Duin, and A. J. Hsueh. 1999. Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology 140:1236-1244.
    Hayes, E., V. Kushnir, X. Ma, A. Biswas, H. Prizant, N. Gleicher, A. J. M. Sen, and c. endocrinology. 2016. Intra-cellular mechanism of anti-Müllerian hormone (AMH) in regulation of follicular development. Mol. Cell. Endocrinol. 433:56-65.
  • Hornick, J., F. Duncan, L. Shea, and T. Woodruff. 2013. Multiple follicle culture supports primary follicle growth through paracrine-acting signals. Reproduction 145.
  • Hreinsson, J. G., J. E. Scott, C. Rasmussen, M. L. Swahn, A. J. Hsueh, and O. Hovatta. 2002. Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J. Clin. Endocrinol. Metab. 87:316-321.
  • Hsieh, M., D. Lee, S. Panigone, K. Horner, R. Chen, A. Theologis, D. C. Lee, D. W. Threadgill, and M. Conti. 2007. Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol. Cell. Biol. 27:1914-1924.
  • Huang, E., K. Nocka, J. Buck, and P. Besmer. 1992. Differential expression and processing of two cell associated forms of the kit-ligand: KL-1 and KL-2. Mol. Biol. Cell 3:349-362.
  • Huang, Y.-H., S.-T. Chu and Y.-H. Chen, 2000. A seminal vesicle autoantigen of mouse is able to suppress sperm capacitation-related events stimulated by serum albumin. Biol. Reprod. 63:1562-1566.
  • Huang, Y.-H., S.-T. Chu, and Y.-H. Chen. 2000. A seminal vesicle autoantigen of mouse is able to suppress sperm capacitation-related events stimulated by serum albumin. Biol. Reprod. 63:1562-1566.
  • Jaatinen, R., M. P. Laitinen, K. Vuojolainen, J. Aaltonen, H. Louhio, K. Heikinheimo, E. Lehtonen, and O. Ritvos. 1999. Localization of growth differentiation factor-9 (GDF-9) mRNA and protein in rat ovaries and cDNA cloning of rat GDF-9 and its novel homolog GDF-9B. Mol. Cell. Endocrinol. 156:189-193.
  • Jagarlamudi, K., L. Liu, D. Adhikari, P. Reddy, A. Idahl, U. Ottander, E. Lundin, and K. Liu. 2009. Oocyte-specific deletion of Pten in mice reveals a stage-specific function of PTEN/PI3K signaling in oocytes in controlling follicular activation. PloS One 4:e6186.
  • Jameel, T. 2008. Sperm swim-up: a simple and effective technique of semen processing for intrauterine insemination. JPMA. J. Pak. Med. Assoc. 58:71-74.
  • Jin, M., E. Fujiwara, Y. Kakiuchi, M. Okabe, Y. Satouh, S. A. Baba, K. Chiba, and N. Hirohashi. 2011. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc. Natl. Acad. Sci. U.S.A. 108:4892-4896.
  • Jin, S. Y., L. Lei, A. Shikanov, L. D. Shea, and T. K. Woodruff. 2010a. A novel two-step strategy for in vitro culture of early-stage ovarian follicles in the mouse. Fertil. Steril. 93:2633-2639.
  • John, G. B., T. D. Gallardo, L. J. Shirley, and D. H. Castrillon. 2008. Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth. Dev. Biol. 321:197-204.
  • Jones, R. L., and M. E. Pepling. 2013. KIT signaling regulates primordial follicle formation in the neonatal mouse ovary. Dev. Biol. 382:186-197.
  • Joo, S., S.-H. Oh, S. Sittadjody, E. C. Opara, J. D. Jackson, S. J. Lee, J. J. Yoo, and A. Atala. 2016. The effect of collagen hydrogel on 3D culture of ovarian follicles. Biomed. Mater. 11:065009.
  • Kaivo-Oja, N., D. G. Mottershead, S. Mazerbourg, S. Myllymaa, S. Duprat, R. B. Gilchrist, N. P. Groome, A. J. Hsueh, and O. Ritvos. 2005. Adenoviral gene transfer allows Smad-responsive gene promoter analyses and delineation of type I receptor usage of transforming growth factor-β family ligands in cultured human granulosa luteal cells. J. Clin. Endocrinol. Metab. 90:271-278.
  • Kaivo-Oja, N., J. Bondestam, M. Kämäräinen, J. Koskimies, U. Vitt, M. Cranfield, K. Vuojolainen, J. P. Kallio, V. M. Olkkonen, and M. Hayashi. 2003. Growth differentiation factor-9 induces Smad2 activation and inhibin B production in cultured human granulosa-luteal cells. J. Clin. Endocrinol. Metab. 88:755-762.
  • Kerr, J. B., R. Duckett, M. Myers, K. L. Britt, T. Mladenovska, and J. K. Findlay. 2006. Quantification of healthy follicles in the neonatal and adult mouse ovary: evidence for maintenance of primordial follicle supply. Reproduction 132:95-109.
  • Kezele, P., and M. K. Skinner. 2003. Regulation of ovarian primordial follicle assembly and development by estrogen and progesterone: endocrine model of follicle assembly. Endocrinology 144:3329-3337.
  • Kim, E. J., C. Yang, J. Lee, H. W. Youm, J. R. Lee, C. S. Suh, and S. H. Kim. 2020. The new biocompatible material for mouse ovarian follicle development in three-dimensional in vitro culture systems. Theriogenology 144:33-40.
  • Komatsu, K., T. Koya, J. Wang, M. Yamashita, F. Kikkawa, and A. Iwase. 2015. Analysis of the effect of leukemia inhibitory factor on follicular growth in cultured murine ovarian tissue. Biol. Reprod. 93:18, 11-18.
  • Kumar, T. R., Y. Wang, N. Lu, and M. M. Matzuk. 1997. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat. Genet. 15:201-204.
  • Kurki, P., K. Ogata, and E. Tan. 1988. Monoclonal antibodies to proliferating cell nuclear antigen (PCNA)/cyclin as probes for proliferating cells by immunofluorescence microscopy and flow cytometry. J. Immunol. Methods 109:49-59.
  • Laitinen, M., K. Vuojolainen, R. Jaatinen, I. Ketola, J. Aaltonen, E. Lehtonen, M. Heikinheimo, and O. Ritvos. 1998. A novel growth differentiation factor-9 (GDF-9) related factor is co-expressed with GDF-9 in mouse oocytes during folliculogenesis. Mech. Dev. 78:135-140.
  • Laplante, M., and D. M. Sabatini. 2012. mTOR signaling in growth control and disease. Cell 149:274-293.
  • Lei, L., S. Jin, K. E. Mayo, and T. K. Woodruff. 2010. The interactions between the stimulatory effect of follicle-stimulating hormone and the inhibitory effect of estrogen on mouse primordial folliculogenesis. Biol. Reprod. 82:13-22.
  • Lessley, B. A., and D. L. Garner. 1983. Isolation of motile spermatozoa by density gradient centrifugation in Percoll®. Gamete Res. 7:49-61.
  • Li, H.-K., T.-Y. Kuo, H.-S. Yang, L.-R. Chen, S. S.-L. Li, and H.-W. Huang. 2008. Differential gene expression of bone morphogenetic protein 15 and growth differentiation factor 9 during in vitro maturation of porcine oocytes and early embryos. Anim. Reprod. Sci. 103:312-322.
  • Liao, W. X., R. K. Moore, F. Otsuka, and S. Shimasaki. 2003. Effect of intracellular interactions on the processing and secretion of bone morphogenetic protein-15 (BMP-15) and growth and differentiation factor-9: implication of the aberrant ovarian phenotype of BMP-15 mutant sheep. J. Biol. Chem. 278:3713-3719.
  • Liu, K., S. Rajareddy, L. Liu, K. Jagarlamudi, K. Boman, G. Selstam, and P. Reddy. 2006. Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway: new roles for an old timer. Dev. Biol. 299:1-11.
    Liu, L. and D.L. Keefe, 2000. Cytoplasm mediates both development and oxidation-induced apoptotic cell death in mouse zygotes. Biol. Reprod. 62:1828-1834.
  • Liu, L., J. R. Trimarchi and D. L. Keefe, 2000. Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes. Biol. Reprod. 62:1745-1753.
  • Liu, L., S. Rajareddy, P. Reddy, C. Du, K. Jagarlamudi, Y. Shen, D. Gunnarsson, G. Selstam, K. Boman, and K. Liu. 2007. Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a. Development 134:199-209.
  • Lorenzo, P. 1992. The effect of EGF on cumulus expansion and bovine oocyte maturation in vitro. Theriogenology 37:1.
    Lorenzo, P., M. Illera, J. Illera, and M. Illera. 1994. Enhancement of cumulus expansion and nuclear maturation during bovine oocyte maturation in vitro by the addition of epidermal growth factor and insulin-like growth factor I. Reproduction 101:697-701.
  • Lucci, C. M., C. A. Amorim, A. P. R. Rodrigues, J. R. d. Figueiredo, S. N. Báo, J. R. V. d. Silva, and P. B. D. J. A. R. S. Gonçalves. 1999. Study of preantral follicle population in situ and after mechanical isolation from caprine ovaries at different reproductive stages. Anim. Reprod. Sci. 56:223-236.
  • Luciano, A. M., V. Lodde, M. S. Beretta, S. Colleoni, A. Lauria, and S. Modina. 2005. Developmental capability of denuded bovine oocyte in a Co‐culture system with intact cumulus‐oocyte complexes: Role of cumulus cells, cyclic adenosine 3′, 5′‐monophosphate, and glutathione. Mol. Reprod. Dev. 71:389-397.
  • Malekshah, A. K., A. E. Moghaddam, and S. M. Daraka. 2006. Comparison of conditioned medium and direct co-culture of human granulosa cells on mouse embryo development. Indian J. Exp. Biol. 44:189-192.
  • Mannan, M., and P. O'Shaughnessy. 1991. Steroidogenesis during postnatal development in the mouse ovary. J. Endocrinol. 130:101-NP.
  • Mao, J., G. Wu, M. F. Smith, T. C. McCauley, T. C. Cantley, R. S. Prather, B. A. Didion, and B. N. J. B. o. r. Day. 2002. Effects of culture medium, serum type, and various concentrations of follicle-stimulating hormone on porcine preantral follicular development and antrum formation in vitro. Biol. Reprod. 67:1197-1203.
  • Markstrom, E., E. Svensson, R. Shao, B. Svanberg, and H. Billig. 2002. Survival factors regulating ovarian apoptosis--dependence on follicle differentiation. Reproduction 123:23-30.
  • Martinez-Madrid, B., J. Donnez, A. S. Van Eyck, A. Veiga-Lopez, M. M. Dolmans, and A. Van Langendonckt. 2009. Chick embryo chorioallantoic membrane (CAM) model: a useful tool to study short-term transplantation of cryopreserved human ovarian tissue. Fertil. Steril. 91:285-292.
  • Martins, F., J. Celestino, M. Saraiva, M. Matos, J. Bruno, C. Rocha-Junior, I. Lima-Verde, C. Lucci, S. Báo, and J. Figueiredo. 2008. Growth and differentiation factor-9 stimulates activation of goat primordial follicles in vitro and their progression to secondary follicles. Reprod. Fertil. Dev. 20:916-924.
  • Matos, M., I. Lima-Verde, J. Bruno, C. Lopes, F. Martins, K. Santos, R. Rocha, J. Silva, S. Báo, and J. Figueiredo. 2007. Follicle stimulating hormone and fibroblast growth factor-2 interact and promote goat primordial follicle development in vitro. Reprod. Fertil. Dev. 19:677-684.
  • Mazerbourg, S., C. Klein, J. Roh, N. Kaivo-Oja, D. G. Mottershead, O. Korchynskyi, O. Ritvos, and A. J. Hsueh. 2004. Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5. Mol. Endocrinol. 18:653-665.
  • McGee, E. A., and A. J. Hsueh. 2000. Initial and cyclic recruitment of ovarian follicles. Endocr. Rev. 21:200-214.
  • McGrath, S. A., A. F. Esquela, and S.-J. Lee. 1995. Oocyte-specific expression of growth/differentiation factor-9. Mol. Endocrinol. 9:131-136.
  • McIntosh, C. J., S. Lun, S. Lawrence, A. H. Western, K. P. McNatty, and J. L. Juengel. 2008. The proregion of mouse BMP15 regulates the cooperative interactions of BMP15 and GDF9. Biol. Reprod. 79:889-896.
  • McNatty, K., K. Reader, P. Smith, D. Heath, and J. Juengel. 2007. Control of ovarian follicular development to the gonadotrophin-dependent phase: a 2006 perspective. Society of Reproduction and Fertility supplement 64:55-68.Monte, A. P., J. M. Santos, V. G. Menezes, B. B. Gouveia, T. L. Lins, R. S. Barberino, J. L. Oliveira Jr, N. J. Donfack, and M. H. T. Matos. 2019. Growth differentiation factor‐9 improves development, mitochondrial activity and meiotic resumption of sheep oocytes after in vitro culture of secondary follicles. Reprod. Domest. Anim. 54:1169-1176.
  • Moody, S. A. 2014. Principles of developmental genetics. Academic Press.
  • Moore, R. K., F. Otsuka, and S. Shimasaki. 2003. Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells. J. Biol. Chem. 278:304-310.
  • Mottershead, D. G., S. Sugimura, S. L. Al-Musawi, J.-J. Li, D. Richani, M. A. White, G. A. Martin, A. P. Trotta, L. J. Ritter, and J. Shi. 2015. Cumulin, an oocyte-secreted heterodimer of the transforming growth factor-β family, is a potent activator of granulosa cells and improves oocyte quality. J. Biol. Chem. 290:24007-24020.
  • Murase, T., A. Iwase, K. Komatsu, Bayasula, T. Nakamura, S. Osuka, S. Takikawa, M. Goto, T. Kotani, and F. Kikkawa. 2018a. Follicle dynamics: visualization and analysis of follicle growth and maturation using murine ovarian tissue culture. J Assist. Reprod. Genet. 35:339-343.
  • Norris, R. P., M. Freudzon, V. O. Nikolaev, and L. A. Jaffe. 2010. EGF receptor kinase activity is required for gap junction closure and for part of the decrease in ovarian follicle cGMP in response to luteinizing hormone. Reproduction 140:655.
  • O'Brien, M. J., J. K. Pendola, and J. J. Eppig. 2003. A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biol. Reprod. 68:1682-1686.
  • O'Flaherty, C., N. Beorlegui and M. Beconi, 1999. Reactive oxygen species requirements for bovine sperm capacitation and acrosome reaction. Theriogenology 52: 289-301.
  • O'Flaherty, C., N. Beorlegui, and M. Beconi. 1999. Reactive oxygen species requirements for bovine sperm capacitation and acrosome reaction. Theriogenology 52:289-301.
  • Okamura, Y., A. Myoumoto, N. Manabe, N. Tanaka, H. Okamura, and M. Fukumoto. 2001. Protein tyrosine kinase expression in the porcine ovary. MHR: Basic science of reproductive medicine 7:723-729.
  • Oktay, K., D. Briggs, and R. G. Gosden. 1997. Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles. J. Clin. Endocrinol. Metab. 82:3748-3751.
  • Oktem, O., and K. Oktay. 2007. The role of extracellular matrix and activin-A in in vitro growth and survival of murine preantral follicles. Reprod. Sci. 14:358-366.
  • O'shaughnessy, P., K. Dudley, and W. Rajapaksha. 1996. Expression of follicle stimulating hormone-receptor mRNA during gonadal development. Mol. Cell. Endocrinol. 125:169-175.
  • O'Shaughnessy, P., P. Marsh, and K. Dudley. 1994. Follicle-stimulating hormone receptor mRNA in the mouse ovary during post-natal development in the normal mouse and in the adult hypogonadal (hpg) mouse: structure of alternate transcripts. Mol. Cell. Endocrinol. 101:197-201.
  • Otsuka, F., and S. Shimasaki. 2002. A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell kit ligand: its role in regulating granulosa cell mitosis. Proc. Natl. Acad. Sci. U.S.A.99:8060-8065.
  • Otsuka, F., Z. Yao, T.-h. Lee, S. Yamamoto, G. F. Erickson, and S. Shimasaki. 2000. Bone morphogenetic protein-15 identification of target cells and biological functions. J. Biol. Chem. 275:39523-39528.
  • Paes, V. M., S. F. Liao, J. R. Figueiredo, S. T. Willard, P. L. Ryan, and J. M. Feugang. 2019. Proteome changes of porcine follicular fluid during follicle development. J. Anim. Sci. Biotechnol. 10:1-13.
  • Paradis, F., S. Novak, G. K. Murdoch, M. K. Dyck, W. T. Dixon, and G. R. Foxcroft. 2009. Temporal regulation of BMP2, BMP6, BMP15, GDF9, BMPR1A, BMPR1B, BMPR2 and TGFBR1 mRNA expression in the oocyte, granulosa and theca cells of developing preovulatory follicles in the pig. Reproduction 138:115.
  • Park, J.-Y., Y.-Q. Su, M. Ariga, E. Law, S.-L. C. Jin, and M. Conti. 2004. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 303:682-684.
  • Patsoula, E., D. Loutradis, P. Drakakis, K. Kallianidis, R. Bletsa, and S. Michalas. 2001. Expression of mRNA for the LH and FSH receptors in mouse oocytes and preimplantation embryos. Reproduction 121:455-461.
  • Pedersen, T. 1970. Follicle kinetics in the ovary of the cyclic mouse. European J. Endocrinol. 64:304-323.
  • Pepling, M. E., and A. C. Spradling. 1998. Female mouse germ cells form synchronously dividing cysts. Development 125:3323-3328.
  • Peters, H. 1969. The development of the mouse ovary from birth to maturity. European J. Endocrinol. 62:98-116.
  • Prakash, S., R. E. Johnson, and L. Prakash. 2005. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem. 74:317-353.
  • Procházka, R., V. Sršeň, E. Nagyová, T. Miyano, and J. E. Flechon. 2000. Developmental regulation of effect of epidermal growth factor on porcine oocyte–cumulus cell complexes: Nuclear maturation, expansion, and F‐actin remodeling. Mol. Reprod. Dev. 56:63-73.
  • Qian, D., Z. Li, Y. Zhang, Y. Huang, Q. Wu, G. Ru, M. Chen and B. Wang, 2016. Response of mouse zygotes treated with mild hydrogen peroxide as a model to reveal novel mechanisms of oxidative stress-induced injury in early embryos. Oxidative medicine and cellular longevity, 2016.
  • Qin, Y., T. Tang, W. Li, Z. Liu, X. Yang, X. Shi, G. Sun, X. Liu, M. Wang, and X. Liang. 2019. Bone morphogenetic protein 15 knockdown inhibits porcine ovarian follicular development and ovulation. Front. Cell Dev. Biol. 7:286.
  • Quinn, R. L., G. Shuttleworth, and M. G. Hunter. 2004. Immunohistochemical localization of the bone morphogenetic protein receptors in the porcine ovary. J. Anat. 205:15-23.
  • Rajah, R., E. M. Glaser, and A. N. Hirshfield. 1992. The changing architecture of the neonatal rat ovary during histogenesis. Dev. Dyn. 194:177-192.
  • Reddy, P., L. Liu, D. Adhikari, K. Jagarlamudi, S. Rajareddy, Y. Shen, C. Du, W. Tang, T. Hämäläinen, and S. L. Peng. 2008. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319:611-613.
  • Reddy, P., W. Zheng, and K. Liu. 2010. Mechanisms maintaining the dormancy and survival of mammalian primordial follicles. Trends Endocrinol. Metab. 21:96-103.
  • Redon, C. E., A. J. Nakamura, Y.-W. Zhang, J. J. Ji, W. M. Bonner, R. J. Kinders, R. E. Parchment, J. H. Doroshow, and Y. Pommier. 2010. Histone γH2AX and poly (ADP-ribose) as clinical pharmacodynamic biomarkers. Clin. Cancer Res. 16:4532-4542.
  • Richani, D. and R.B. Gilchrist, 2018. The epidermal growth factor network: Role in oocyte growth, maturation and developmental competence. Hum. Reprod. Update 24:1-14.
  • Richani, D., M. L. Sutton-McDowall, L. A. Frank, R. B. Gilchrist, and J. G. Thompson. 2014. Effect of epidermal growth factor-like peptides on the metabolism of in vitro-matured mouse oocytes and cumulus cells. Biol. Reprod. 90:1-10.
  • Ritter, L. J., S. Sugimura, and R. B. Gilchrist. 2015. Oocyte induction of EGF responsiveness in somatic cells is associated with the acquisition of porcine oocyte developmental competence. Endocrinology 156:2299-2312.
  • Rodgers, R. J., and H. F. Irving-Rodgers. 2010. Formation of the ovarian follicular antrum and follicular fluid. Biol. Reprod. 82:1021-1029.
  • Sadr, S. Z., R. Fatehi, S. Maroufizadeh, C. A. Amorim, and B. Ebrahimi. 2018. Utilizing fibrin-alginate and matrigel-alginate for mouse follicle development in three-dimensional culture systems. Biopreservation and biobanking 16:120-127.
  • Sasseville, M., L. J. Ritter, T. M. Nguyen, F. Liu, D. G. Mottershead, D. L. Russell, and R. B. Gilchrist. 2010. Growth differentiation factor 9 signaling requires ERK1/2 activity in mouse granulosa and cumulus cells. J. Cell Sci. 123:3166-3176.
  • Sawai, K., H. Funahashi and K. Niwa, 1997. Stage-specific requirement of cysteine during in vitro maturation of porcine oocytes for glutathione synthesis associated with male pronuclear formation'. Biol. Reprod. 57:1-6.
  • Schmidt, D., C. E. Ovitt, K. Anlag, S. Fehsenfeld, L. Gredsted, A.-C. Treier, and M. Treier. 2004. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 131:933-942.
    Sharma, G. T., P. K. Dubey, and S. Meur. 2009. Survival and developmental competence of buffalo preantral follicles using three-dimensional collagen gel culture system. Anim. Reprod. Sci. 114:115-124.
  • Shikanov, A., M. Xu, T. K. Woodruff, and L. D. Shea. 2009. Interpenetrating fibrin–alginate matrices for in vitro ovarian follicle development. Biomaterials 30:5476-5485.
  • Shimada, M., I. Hernandez-Gonzalez, I. Gonzalez-Robayna, and J. S. Richards. 2006. Paracrine and autocrine regulation of epidermal growth factor-like factors in cumulus oocyte complexes and granulosa cells: key roles for prostaglandin synthase 2 and progesterone receptor. Mol. Endocrinol. 20:1352-1365.
  • Shimasaki, S., R. J. Zachow, D. Li, H. Kim, S.-i. Iemura, N. Ueno, K. Sampath, R. J. Chang, and G. F. Erickson. 1999. A functional bone morphogenetic protein system in the ovary. Proc. Natl. Acad. Sci. U.S.A.96:7282-7287.
  • Silva, G., R. Rossetto, R. Chaves, A. Duarte, V. Araújo, C. Feltrin, M. Bernuci, J. A. Anselmo-Franci, M. Xu, and T. K. Woodruff. 2015. In vitro development of secondary follicles from pre-pubertal and adult goats cultured in two-dimensional or three-dimensional systems. Zygote 23:475-484.
  • Silva, J. R., R. van den Hurk, M. H. de Matos, R. R. dos Santos, C. Pessoa, M. O. de Moraes, and J. R. de Figueiredo. 2004b. Influences of FSH and EGF on primordial follicles during in vitro culture of caprine ovarian cortical tissue. Theriogenology 61:1691-1704.
  • Silva, J. R., R. van den Hurk, S. H. Costa, E. R. Andrade, A. P. Nunes, F. V. Ferreira, R. N. Lôbo, and J. R. Figueiredo. 2004a. Survival and growth of goat primordial follicles after in vitro culture of ovarian cortical slices in media containing coconut water. Anim. Reprod. Sci. 81:273-286.
  • Simpson, C. M., P. G. Stanton, K. L. Walton, K. L. Chan, L. J. Ritter, R. B. Gilchrist, and C. A. Harrison. 2012. Activation of latent human GDF9 by a single residue change (Gly391Arg) in the mature domain. Endocrinology 153:1301-1310.
  • Smitz, J., M. M. Dolmans, J. Donnez, J. E. Fortune, O. Hovatta, K. Jewgenow, H. M. Picton, C. Plancha, L. D. Shea, R. L. Stouffer, E. E. Telfer, T. K. Woodruff, and M. B. Zelinski. 2010. Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum. Reprod. Update 16:395-414.
  • Soyun, E. Y., P. S. LaPolt, B. S. Yoon, J. Y.-C. Chen, J. K. Lu, and K. M. Lyons. 2001. The type I BMP receptor BmprIB is essential for female reproductive function. Proc. Natl. Acad. Sci. U.S.A. 98:7994-7999.
  • Stoimenov, I., and T. Helleday. 2009. PCNA on the crossroad of cancer. Biochemical Society Transactions 37(3):605-613.
  • Storey, B. T., M. A. Lee, C. Muller, C. R. Ward, and D. G. Wirtshafter. 1984. Binding of Mouse Spermatozoa to the ZónaePellucidae of Mouse Eggs in Cumulus: Evidence that the Acrosomes Remain Substantially Intact. Biol. Reprod. 31:1119-1128.
  • Su, Y.-Q., K. Sugiura, Q. Li, K. Wigglesworth, M. M. Matzuk, and J. J. Eppig. 2010. Mouse oocytes enable LH-induced maturation of the cumulus-oocyte complex via promoting EGF receptor-dependent signaling. Mol. Endocrinol. 24:1230-1239.
  • Sun, R., L. Lei, L. Cheng, Z. Jin, S. Zu, Z. Shan, Z. Wang, J. Zhang, and Z. Liu. 2010. Expression of GDF-9, BMP-15 and their receptors in mammalian ovary follicles. J. Mol. Histol. 41:325-332.
  • Takahashi, M. 2012. Oxidative stress and redox regulation on in vitro development of mammalian embryos. Journal of Reproduction and Development 58(1):1-9.
  • Takeo, T. and N. Nakagata, 2011. Reduced glutathione enhances fertility of frozen/thawed c57bl/6 mouse sperm after exposure to methyl-beta-cyclodextrin. Biol. Reprod., 85: 1066-1072.
  • Tan, C.-K., K. Sullivan, X. Li, E. M. Tan, K. M. Downey, and A. G. So. 1987. Autoantibody to the proliferating cell nuclear antigen neutralizes the activity of the auxiliary protein for DNA polymerase delta. Nucleic Acids Res. 15:9299-9308.
  • Tang, K., W.-C. Yang, X. Li, C.-J. Wu, L. Sang, and L.-G. Yang. 2012. GDF-9 and bFGF enhance the effect of FSH on the survival, activation, and growth of cattle primordial follicles. Anim. Reprod. Sci. 131:129-134.
  • Tasaki, H., H. Iwata, D. Sato, Y. Monji, and T. Kuwayama. 2013. Estradiol has a major role in antrum formation of porcine preantral follicles cultured in vitro. Theriogenology 79:809-814.
  • Tecirlioglu, R., O. Lacham-Kaplan and A. Trounson, 2002. Effects of electrical stimulation and seminal plasma on the motility of mouse sperm. Reprod. Fertil. Dev. 14: 471-478.
  • Telfer, E. 1996. The development of methods for isolation and culture of preantral follicles from bovine and porcine ovaries. Theriogenology 45:101-110.
  • Thomas, F. H., J.-F. Ethier, S. Shimasaki, and B. C. Vanderhyden. 2005. Follicle-stimulating hormone regulates oocyte growth by modulation of expression of oocyte and granulosa cell factors. Endocrinology 146:941-949.
  • Tran, H., A. Brunet, E. C. Griffith, and M. E. Greenberg. 2003. The many forks in FOXO's road. Sci. STKE 2003(172):re5-re5.
    Trounson, A., C. Anderiesz, and G. Jones. 2001. Maturation of human oocytes in vitro and their developmental competence. Reproduction 121:51-75.
  • Uhm, S., M. Gupta, J. Yang, H.-J. Chung, T. Min, and H. Lee. 2010. Epidermal growth factor can be used in lieu of follicle-stimulating hormone for nuclear maturation of porcine oocytes in vitro. Theriogenology 73:1024-1036.
  • Van Den Hurk, R., and J. Zhao. 2005. Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology 63:1717-1751.
  • Vanderhyden, B. 2002. Molecular basis of ovarian development and function. Front. Biosci. 7:d2-006.
  • Vatanparast, M., M. A. Khalili, N. Yari, M. Omidi, and M. Mohsenzadeh. 2018. Evaluation of sheep ovarian tissue cryopreservation with slow freezing or vitrification after chick embryo chorioallantoic membrane transplantation. Cryobiology 81:178-184.
  • Visser, J. A., A. L. Durlinger, I. J. Peters, E. R. van den Heuvel, U. M. Rose, P. Kramer, F. H. de Jong, and A. P. Themmen. 2007. Increased oocyte degeneration and follicular atresia during the estrous cycle in anti-Mullerian hormone null mice. Endocrinology 148:2301-2308.
  • Vitt, U. A., E. A. McGee, M. Hayashi, and A. J. Hsueh. 2000b. In vivo treatment with GDF-9 stimulates primordial and primary follicle progression and theca cell marker CYP17 in ovaries of immature rats. Endocrinology 141(10):3814-3820.
  • Vitt, U., M. Hayashi, C. Klein, and A. Hsueh. 2000a. Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles. Biol. Reprod. 62:370-377.
  • Wandji, S., V. Srsen, P. Nathanielsz, J. Eppig, and J. Fortune. 1997. Initiation of growth of baboon primordial follicles in vitro. Hum. Reprod. 12:1993-2001.
  • Wandji, S.-A., V. Sršeň, A. Voss, J. Eppig, and J. Fortune. 1996. Initiation in vitro of growth of bovine primordial follicles. Biol. Reprod. 55:942-948.
  • Wang, D., X. Di, J. Wang, M. Li, D. Zhang, Y. Hou, J. Hu, G. Zhang, H. Zhang, and M. Sun. 2018. Increased formation of follicular antrum in aquaporin-8-deficient mice is due to defective proliferation and migration, and not steroidogenesis of granulosa cells. Front. physiol. 9:1193.
  • Wang, J., and S. K. Roy. 2004. Growth differentiation factor-9 and stem cell factor promote primordial follicle formation in the hamster: modulation by follicle-stimulating hormone. Biol. Reprod. 70:577-585.
  • Wang, X., S. Catt, M. Pangestu, and P. Temple-Smith. 2011. Successful in vitro culture of pre-antral follicles derived from vitrified murine ovarian tissue: oocyte maturation, fertilization, and live births. Reproduction 14:183.
  • West-Farrell, E. R., M. Xu, M. A. Gomberg, Y. H. Chow, T. K. Woodruff, and L. D. Shea. 2009. The mouse follicle microenvironment regulates antrum formation and steroid production: alterations in gene expression profiles. Biol. Reprod. 80:432-439.
  • Wilson, T., X.-Y. Wu, J. L. Juengel, I. K. Ross, J. M. Lumsden, E. A. Lord, K. G. Dodds, G. A. Walling, J. C. McEwan, and A. R. O’Connell. 2001. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol. Reprod. 64:1225-1235.
  • Wu, Q., Z. Li, Y. Huang, D. Qian, M. Chen, W. Xiao and B. Wang, 2017. Oxidative stress delays prometaphase/metaphase of the first cleavage in mouse zygotes via the mad2l1-mediated spindle assembly checkpoint. Oxidative medicine and cellular longevity, 2017.
  • Xiao, J., Y. Liu, Z. Li, Y. Zhou, H. Lin, X. Wu, M. Chen and W. Xiao, 2012. Effects of the insemination of hydrogen peroxide-treated epididymal mouse spermatozoa on γh2ax repair and embryo development. PLoS One, 7:e38742.
  • Xu, B., J. Hua, Y. Zhang, X. Jiang, H. Zhang, T. Ma, W. Zheng, R. Sun, W. Shen, and J. Sha. 2011. Proliferating cell nuclear antigen (PCNA) regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries. PloS One 6:e16046.
  • Xu, M., E. R. West-Farrell, R. L. Stouffer, L. D. Shea, T. K. Woodruff, and M. B. Zelinski. 2009. Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles. Biol. Reprod. 81:587-594.
  • Xu, M., E. West, L. D. Shea, and T. K. Woodruff. 2006. Identification of a stage-specific permissive in vitro culture environment for follicle growth and oocyte development. Biol. Reprod. 75:916-923.
  • Xu, S., X. Wu, Y. Dong, M. Xu, Z. Li, S. Chen, Y. Zhuo, Y. Lin, L. Che, and Z. Fang. 2020. Glucose activates the primordial follicle through the AMPK/mTOR signaling pathway. Clinical and Translational Medicine 10:e122.
  • Yan, C., P. Wang, J. DeMayo, F. J. DeMayo, J. A. Elvin, C. Carino, S. V. Prasad, S. S. Skinner, B. S. Dunbar, and J. L. Dube. 2001. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol. Endocrinol. 15:854-866.
  • Young, J., and A. S. McNeilly. 2010. Theca: the forgotten cell of the ovarian follicle. Reproduction 140:489-504.
  • Zand, E., R. Fathi, M. H. Nasrabadi, M. J. Atrabi, N. Spears, and V. Akbarinejad. 2018. Maturational gene upregulation and mitochondrial activity enhancement in mouse in vitro matured oocytes and using granulosa cell conditioned medium. Zygote 26:366-371.
  • Zhang, H., Q. Luo, X. Lu, N. Yin, D. Zhou, L. Zhang, W. Zhao, D. Wang, P. Du, and Y. Hou. 2018. Effects of hPMSCs on granulosa cell apoptosis and AMH expression and their role in the restoration of ovar function in premature ovarian failure mice. Stem Cell Res. Ther. 9:1-12.
  • Zhang, H., S. Risal, N. Gorre, K. Busayavalasa, X. Li, Y. Shen, B. Bosbach, M. Brännström, and K. Liu. 2014. Somatic cells initiate primordial follicle activation and govern the development of dormant oocytes in mice.Curr. Biol. 24:2501-2508.
  • Zhang, J., W. Liu, X. Sun, F. Kong, Y. Zhu, Y. Lei, Y. Su, Y. Su, and J. Li. 2017. Inhibition of mTOR signaling pathway delays follicle formation in mice. J. Cell. Physiol. 232:585-595.
  • Zhao, F., Q. Yang, S. Shi, X. Luo and Y. Sun, 2016. Semen preparation methods and sperm telomere length: Density gradient centrifugation versus the swim up procedure. Sci. Rep. 6:1-7.
  • Zhou, H., J. T. Decker, M. M. Lemke, C. E. Tomaszweski, L. D. Shea, K. B. Arnold, and A. Shikanov. 2018. Synergy of paracrine signaling during early-stage mouse ovarian follicle development in vitro. Cell. Mol. Bioeng. 11:435-450.
  • Zhou, H., M. A. Malik, A. Arab, M. T. Hill, and A. Shikanov. 2015. Hydrogel based 3-dimensional (3D) system for toxicity and high-throughput (HTP) analysis for cultured murine ovarian follicles. PloS One 10: e0140205.
  • Zhou, P., Y.-G. Wu, D.-L. Wei, Q. Li, G. Wang, J. Zhang, M.-J. Luo and J.-H. Tan, 2010. Mouse cumulus-denuded oocytes restore developmental capacity completely when matured with optimal supplementation of cysteamine, cystine, and cumulus cells. Biol. Reprod., 82:759-768.
  • Zhou, P., Y.-G. Wu, Q. Li, G.-C. Lan, G. Wang, D. Gao and J.-H. Tan, 2008. The interactions between cysteamine, cystine and cumulus cells increase the intracellular glutathione level and developmental capacity of goat cumulus-denuded oocytes. Reproduction 135:605-611.